বৃত্তচাপ
ইউক্লিডিয় জ্যামিতিতে বৃত্তচাপ (প্রতীক: ⌒) হল কোন ব্যবকলনযোগ্য বক্ররেখার একটি আবদ্ধ । দ্বিমাত্রিক বহুভাঁজে অর্থাৎ সমতলের ক্ষেত্রে কোন বৃত্তের কর্তিত অংশ বৃত্তচাপের একটি সাধারণ উদাহরণ; এক্ষেত্রে একে বৃত্তীয় বৃত্তচাপ বলা হয়। কোন স্থানে কোন বৃত্তচাপ একটি মহাবৃত্ত বা মহা-উপবৃত্তের অংশ হয়ে থাকলে একে মহা বৃত্তচাপ বলা হয়। একটি বৃত্তের প্রতি জোড়া পৃথক পৃথক (স্বতন্ত্র) বিন্দু দুটি বৃত্তচাপকে নির্দেশ করে। বিন্দু দুটি যদি পরস্পরের সরাসরি বিপরীতে অবস্থান না করে অর্থাৎ ঐ বিন্দু দুটি ও কেন্দ্রের সংযোগ রেখা যদি সরল না হয় তবে এই বৃত্তচাপ দুটির একটি হবে গৌণ বৃত্তচাপ বা উপচাপ যা বৃত্তের কেন্দ্রে π রেডিয়ান অর্থাৎ (১৮০ ডিগ্রি বা দুই সমকোণ) অপেক্ষা ক্ষুদ্র কোণ দখল করবে এবং অপরটি মুখ্য বৃত্তচাপ বা অধিচাপ (জ্যামিতি) যা বৃত্তের কেন্দ্রে π রেডিয়ান অপেক্ষা বৃহৎ কোণ দখল করবে।
বৃত্তীয় বৃত্তচাপ
[সম্পাদনা]বৃত্তের বৃত্তচাপের দৈর্ঘ্য
[সম্পাদনা]ধরাযাক, ব্যাসার্ধের কোন বৃত্তের একটি বৃত্তচাপের দৈর্ঘ্য যা বৃত্তের কেন্দ্রে রেডিয়ান এককে কোণ উৎপন্ন করেছে অর্থাৎ কেন্দ্রস্থ কোণের মান রেডিয়ান।
এখন, আমরা জানি, কোন বৃত্তের বৃত্তচাপের দৈর্ঘ্য ও বৃত্তটির পরিধির অনুপাত বৃত্তচাপ দ্বারা কেন্দ্রে উৎপন্ন কোণ ও বৃত্তটির পরিধি দ্বারা কেন্দ্রে উৎপন্ন কোণের অনুপাতের সমান। তাহলে আমরা পাব—
পরিধির মান প্রতিস্থাপন করে—
or,
এখন ডিগ্রি এককে উক্ত কোণের পরিমাপ হলে—
সুতরাং বৃত্তচাপটির দৈর্ঘ্য বা বৃত্তচাপ-দৈর্ঘ্য হবে—
প্রায়োগিক পদ্ধতিতে বৃত্তের বৃত্তচাপ-দৈর্ঘ্য নির্ণয়ের ক্ষেত্রে প্রথমে বৃত্তচাপটির প্রান্তবিন্দুদ্বয় থেকে বৃত্তের কেন্দ্রে দুটি রেখা টানতে হয় এবং রেখাদ্বয় কেন্দ্রে মিলিত হয়ে যে কোণ উৎপন্ন করে তা পরিমাপ করতে হয়। অতঃপর নিম্নোক্ত গাণিতিক নির্বচনটির আড় গুণন থেকে বৃত্তচাপ-দৈর্ঘ্য নির্ণয় করা হয়:
- (ডিগ্রি এককে কোণের মান)/৩৬০° = L/পরিধি
উদাহরণস্বরূপ, যদি কোণের মান 60° এবং পরিধি 24 inche হয় তবে—
বৃত্তের পরিধি কেন্দ্রে যে কোণ উৎপন্ন করা তার মান সর্বদা 360° এবং পরিধি ও এই কোণের মান পরস্পরের সমানুপাতিক হওয়ায় এমনটা হয়।
একটি বৃত্তের ঊর্ধ্বস্থ অর্ধাংশের পরামিতি নিম্নরূপে লেখা যায়—
সুতরাং থেকে সীমায় বৃত্তচাপ-দৈর্ঘ্য হল:
বৃত্তচাপের ক্ষেত্রফল
[সম্পাদনা]একটি বৃত্তের কোন বৃত্তচাপের প্রান্তবিন্দুদ্বয় থেকে বৃত্তটির কেন্দ্রে দুটি রেখা টানলে যে কর্তিত বা খণ্ডিত অংশটি পরিস্ফুটিত হয় সেই কর্তিত বা খণ্ডিত অংশটিকে সেক্টর বলা হয়। বৃত্তচাপ সেক্টর ক্ষেত্রফল (Arc sector area) বলতে এই খণ্ডাংশটির ক্ষেত্রফলকে বোঝানো হয় যা বাংলাভাষী বিদ্যার্থীদের কাছে বৃত্তচাপের ক্ষেত্রফল হিসেবে পরিচিত ও চর্চিত।
এখন, ব্যাসার্ধের বৃত্তে কোন বৃত্তচাপ বৃত্তটির কেন্দ্রে দখল করলে বৃত্তচাপটির ক্ষেত্রফল অর্থাৎ বৃত্তচাপ সেক্টর ক্ষেত্রফল হবে—
প্রমাণ: আমরা জানি, বৃত্তের কোন সেক্টরের ক্ষেত্রফল এবং বৃত্তের ক্ষেত্রফলের অনুপাত, সেক্টর কর্তৃক কেন্দ্রে দখলকৃত কোণ এবং যে কোন সম্পূর্ণ বৃত্তের কোণের অনুপাতের সমান। সুতরাং—
উভয় পক্ষ থেকে কে বর্জন করলে আমরা পাব—
সবশেষে উভয় পক্ষকে দ্বারা গুণ করলে সেক্টরের ক্ষেত্রফল হবে—
এবং কেন্দ্রস্থ কোণকে ডিগ্রি এককে পরিমাপ করা হলে উপরে বর্ণিত রূপান্তরটি প্রয়োগ করে পাই— সেক্টরের ক্ষেত্রফল:
বৃত্তচাপ সেগমেন্ট ক্ষেত্রফল
[সম্পাদনা]বৃত্তচাপ এবং এর দুইপ্রান্তবিন্দুর সংযোজক রেখার দ্বারা গঠিত কাঠামোর (চিত্রে: সবুজ অংশ) ক্ষেত্রফল:
অর্থাৎ সেক্টরটির ক্ষেত্রফল থেকে এর ত্রিভুজাকার অংশের ক্ষেত্রফল বিয়োগ করলে বৃত্তচাপ সেগমেন্ট ক্ষেত্রফল পাওয়া যাবে। আরও জানতে বৃত্তাকার সেগমেন্ট দেখুন।
বৃত্তচাপের ব্যাসার্ধ
[সম্পাদনা]ছেদক-স্পর্শক উপপাদ্য (আন্তঃছেদী জ্যা উপপাদ্য) ব্যবহার করে বৃত্তচাপের ব্যাসার্ধ পরিমাপ করা সম্ভব।
ধরাযাক, কোন বৃত্তচাপের ব্যাসার্ধ , উচ্চতা এবং বেধ । বৃত্তচাপের প্রান্তবিন্দুদ্বয়কে সংযুক্ত করে একটি জ্যা কল্পনা করা যাক। এই জ্যা এর লম্ব-সমদ্বিখণ্ডক নিজেও একটি জ্যা, যা সংশ্লিষ্ট বৃত্তের একটি ব্যাস। বিবেচনাধীন বৃত্তচাপটির বেধ অর্থাৎ প্রথম জ্যা এর দৈর্ঘ্য এবং এর প্রত্যেক অর্ধাংশের (যেহেতু প্রথম জ্যাটি লম্ব-সমদ্বিখণ্ডক দ্বারা দ্বিখণ্ডিত) দৈর্ঘ্য । ব্যাসের মোট দৈর্ঘ্য এবং এটি প্রথম জ্যা দ্বারা দ্বিখণ্ডিত। দ্বিতীয় জ্যা এর এই খণ্ডদ্বয়ের একটি হবে আলোচনাধীন চাপটির সাজিটা তথা উচ্চতা এবং অপর অংশের দৈর্ঘ্য হবে ।
এখন এই দুই জ্যা-এ আন্তঃছেদী জ্যা উপপাদ্য প্রয়োগ করলে আমরা পাই—
or
সুতরাং ব্যাসার্ধ,
পরাবৃত্তীয় বৃত্তচাপ
[সম্পাদনা]আরও পড়ুন
[সম্পাদনা]তথ্যসূত্র
[সম্পাদনা]- Table of contents for Math Open Reference Circle pages
- Math Open Reference page on circular arcs With interactive animation
- Math Open Reference page on Radius of a circular arc or segment With interactive animation
- এরিক ডব্লিউ. ওয়াইস্টাইন সম্পাদিত ম্যাথওয়ার্ল্ড থেকে "Arc"।