Idi na sadržaj

Jednačina

S Wikipedije, slobodne enciklopedije
Prva jednačina, ikada napisana, od strane Roberta Recordea, koji je izmislio znak jednakosti.

Jednačina je matematički pojam koji izražava vezu između poznatih i nepoznatih veličina posredstvom znaka jednakosti koji izjednačava lijevu i desnu stranu jednačine. Razlikujemo matematički identitet, gdje se ustanovljava jednakost lijeve i desne strane,

Za svaku datu vrijednost , uvijek je tačno

.
Dvije gornje jednakosti su primjeri identiteta.
nije identitet

Gornja jednačina je netačna za beskonačno mnogo vrijednosti promenljive . Tačna je za samo jedno jedinstveno rješenje, a to je je . Ako je poznato da je jednačina tačna, ona daje podatak o vrijednosti . Uopšteno, vrijednosti promenljivih za koje je jednačina tačna nazivaju se rešenje jednačine. Riješiti jednačinu znači naći njena rješenja.

Primjer
je identitet, dok je
jednačina, čija su rješenja i .

Slova sa početka alfabeta, kao što su , , koriste se za označavanje konstante, a slova sa kraja alfabeta, kao što su , ' za označavanje promjenljive.

Neka su data preslikavanja i . Često moramo naći skup takav da je:

za svako .

Treba riješiti jednačinu

Ako ne postoji takvo jednačina je nemoguća. Formula je definisana ako je određen skup. Skup brojeva za koje je definisana nazivamo prirodno područje definicije

Osobine

[uredi | uredi izvor]

Ako je jednačina u algebri tačna, sljedeće operacije se mogu sprovesti da bi se dobila nova tačna jednačina:

Teorem 1

[uredi | uredi izvor]

Ako je definisana tada su jednačine

ekvivalentne.

Teorem 2

[uredi | uredi izvor]
Za
je ekvivalentna sa

Teorem 3

[uredi | uredi izvor]

Ako su ekvivalentne onda su i pojedinačne jednačine ekvivalentne i nova rješenja su rješenja jednačine

Teorem 4

[uredi | uredi izvor]

je podjednačina jednačine

Također pogledajte

[uredi | uredi izvor]