Differentiation Rules

Sum Rule:

ddx(f(x)+g(x))=df(x)dx+dg(x)dx\large \frac{d}{d x}(f(x) + g(x)) = \frac{df(x)}{dx} + \frac{d g(x)}{d x}

Power Rule:

f(x)=axb             f(x)axb1 \large f(x) = ax^b \ \ \ \ \ \ \ \ \ \ \ \ \ f'(x) ax^{b - 1}

Product Rule:

A(x)=f(x)g(x)       A(x)=f(x)g(x)+g(x)f(x)\large A(x) = f(x)g(x) \ \ \ \ \ \ \ A'(x) = f(x)g'(x) + g(x)f'(x)

Chain Rule:

if h=h(p) h = h(p) and p=p(m) p = p(m)

dhdm=dhdpdpdm\huge \frac{dh}{dm} = \frac{dh}{dp} \cdot \frac{dp}{dm}

Exponential Functions: Self-Similarity

f(x)=ex              f(x)=ex\large f(x) = e^x \ \ \ \ \ \ \ \ \ \ \ \ \ \ f'(x) = e^x

The rate of change of an exponential function is proportional to the function itself.

Trigonometry Functions:

f(x) =  sin(x)f(x) =  cos(x)f(x)=sin(x)f(3)   = cos(x)f(4)   =   sin(x) f(x) \ = \ \ sin(x) \\ f'(x) \ = \ \ cos (x) \\ f''(x) = -sin(x) \\ f^{(3)} \ \ \ = \ -cos(x) \\ f^{(4)} \ \ \ = \ \ \ sin(x)

Last updated