Regular polyhedron

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
<nowiki>poliedro regular; 正多面體; Poliedro erregular; регулярный многогранник; reguläres Polyeder; Poliedri i rregullt; چندوجهی منتظم; правилен многостен; Regulære polyeder; poliedru regulat; 正多面体; reguläres Polyeder; регулярний багатогранник; Säännöllinen monitahokas; regula pluredro; pravidelný mnohostěn; ஒழுங்கு பன்முகத்திண்மம்; poliedro regolare; সুষম বহুতলক; polyèdre régulier; звычайны шматграньнік; poliedro regular; 정다면체; Taisyklingasis briaunainis; pravilni polieder; Κανονικό πολύεδρο; poliedro regular; Korrapärane hulktahukas; ทรงหลายหน้าปรกติ; regulært polyeder; regulært polyeder; regular polyhedron; правилни полиедри; políedre regular; Solid platonic; khối đa diện đều; Poliedro regular; عديد سطوح منتظم; 正多面体; 正多面體; poliedro le cui facce sono regolari e congruenti; poliedro cujas faces são polígonos regulares congruentes; Aurpegi guztiak poligono erregular berdinak (kongruenteak) eta angelu poliedro guztiak kongruenteak dituena; многогранник, группа симметрии которого транзитивно действует на флагах (кроме пяти правильных это четыре невыпуклых звёздчатых); 同时具有等边、等角和等面特性的多面体; poliedro cujas faces são polígonos regulares congruentes; polyhedron with regular congruent polygons as faces; 同時具有等邊、等角和等面特性的多面體; mnohostěn, jehož stěny jsou tvořeny shodnými pravidelnými mnohoúhelníky; poliedro cuyas caras son polígonos regulares congruentes; regular polyhedra; regular polyhedrons; рэгулярны шматграньнік; regulärer Polyeder; 正多面体</nowiki>
regular polyhedron 
polyhedron with regular congruent polygons as faces
Upload media
Subclass of
Authority file
Wikidata Q735071
BabelNet ID: 00045806n
Edit infobox data on Wikidata
English: There are five convex regular polyhedra, the Platonic solids, and four regular star polyhedra, the Kepler-Poinsot polyhedra.

Platonic solids

[edit]
w:Tetrahedron {3, 3} w:Cube {4, 3} w:Octahedron {3, 4} w:Dodecahedron {5, 3} w:Icosahedron {3, 5}

Kepler-Poinsot polyhedra

[edit]
w:Small stellated dodecahedron
{5/2, 5}
w:Great dodecahedron
{5, 5/2}
w:Great stellated dodecahedron
{5/2, 3}
w:Great icosahedron
{3, 5/2}