Abstract: We give a new region of existence of solutions to the superhomogeneous Dirichlet problem \begin{equation}\begin{array}{l}-\Delta_{p}u=v^{\delta},\quad v>0\ \mbox{in}\ B,\\-\Delta_{q}v=u^{\mu},\quad u>0\ \mbox{in}\ B,\\u=v=0\quad\mbox{on}\ \curpartial B,\end{array}\label{(S_R)}\end{equation} where B is the ball of radius R>0 centered at the origin in $\mathbb {R}^{N}$ . Here δ,μ>0 and Δm u=div(|∇u|m−2 ∇u) is the m-Laplacian operator for m>1.