default search action
Manfred Opper
Person information
- affiliation: Technical University of Berlin, Department of Mathematics, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c55]Rembert Daems, Manfred Opper, Guillaume Crevecoeur, Tolga Birdal:
Variational Inference for SDEs Driven by Fractional Noise. ICLR 2024 - [c54]Ludwig Winkler, Lorenz Richter, Manfred Opper:
Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models. ICML 2024 - [c53]Burak Çakmak, Yue M. Lu, Manfred Opper:
A Convergence Analysis of Approximate Message Passing with Non-Separable Functions and Applications to Multi-Class Classification. ISIT 2024: 747-752 - [c52]Eleni Gkiouzepi, Burak Çakmak, Manfred Opper, Giuseppe Caire:
Joint Message Detection, Channel, and User Position Estimation for Unsourced Random Access in Cell-Free Networks. SPAWC 2024: 151-155 - [i27]Burak Çakmak, Yue M. Lu, Manfred Opper:
A Convergence Analysis of Approximate Message Passing with Non-Separable Functions and Applications to Multi-Class Classification. CoRR abs/2402.08676 (2024) - [i26]Ludwig Winkler, Lorenz Richter, Manfred Opper:
Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models. CoRR abs/2405.03549 (2024) - [i25]Eleni Gkiouzepi, Burak Çakmak, Manfred Opper, Giuseppe Caire:
Joint Message Detection, Channel, and User Position Estimation for Unsourced Random Access in Cell-Free Networks. CoRR abs/2408.08045 (2024) - 2023
- [j30]Ludwig Winkler, César Ojeda, Manfred Opper:
A Score-Based Approach for Training Schrödinger Bridges for Data Modelling. Entropy 25(2): 316 (2023) - [i24]Burak Çakmak, Eleni Gkiouzepi, Manfred Opper, Giuseppe Caire:
Inference in Linear Observations with Multiple Signal Sources: Analysis of Approximate Message Passing and Applications to Unsourced Random Access in Cell-Free Systems. CoRR abs/2304.12290 (2023) - [i23]Rembert Daems, Manfred Opper, Guillaume Crevecoeur, Tolga Birdal:
Variational Inference for SDEs Driven by Fractional Noise. CoRR abs/2310.12975 (2023) - 2022
- [j29]Noa Malem-Shinitski, César Ojeda, Manfred Opper:
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects. Entropy 24(3): 356 (2022) - [j28]Ludwig Winkler, César Ojeda, Manfred Opper:
Stochastic Control for Bayesian Neural Network Training. Entropy 24(8): 1097 (2022) - [j27]Christian Molkenthin, Christian Donner, Sebastian Reich, Gert Zöller, Sebastian Hainzl, Matthias Holschneider, Manfred Opper:
GP-ETAS: semiparametric Bayesian inference for the spatio-temporal epidemic type aftershock sequence model. Stat. Comput. 32(2): 29 (2022) - [i22]Burak Çakmak, Yue M. Lu, Manfred Opper:
Analysis of Random Sequential Message Passing Algorithms for Approximate Inference. CoRR abs/2202.08198 (2022) - 2021
- [j26]Théo Galy-Fajou, Valerio Perrone, Manfred Opper:
Flexible and Efficient Inference with Particles for the Variational Gaussian Approximation. Entropy 23(8): 990 (2021) - [i21]Burak Çakmak, Manfred Opper:
Exact solution to the random sequential dynamics of a message passing algorithm. CoRR abs/2101.01571 (2021) - [i20]Noa Malem-Shinitski, César Ojeda, Manfred Opper:
Nonlinear Hawkes Process with Gaussian Process Self Effects. CoRR abs/2105.09618 (2021) - [i19]Théo Galy-Fajou, Manfred Opper:
Adaptive Inducing Points Selection For Gaussian Processes. CoRR abs/2107.10066 (2021) - 2020
- [j25]Dimitra Maoutsa, Sebastian Reich, Manfred Opper:
Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Entropy 22(8): 802 (2020) - [j24]Noa Malem-Shinitski, Manfred Opper, Sebastian Reich, Lisa Schwetlick, Stefan A. Seelig, Ralf Engbert:
A mathematical model of local and global attention in natural scene viewing. PLoS Comput. Biol. 16(12) (2020) - [c51]Théo Galy-Fajou, Florian Wenzel, Manfred Opper:
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models. AISTATS 2020: 3025-3035 - [i18]Burak Çakmak, Manfred Opper:
Analysis of Bayesian Inference Algorithms by the Dynamical Functional Approach. CoRR abs/2001.04918 (2020) - [i17]Manfred Opper, Burak Çakmak:
Understanding the dynamics of message passing algorithms: a free probability heuristics. CoRR abs/2002.02533 (2020) - [i16]Théo Galy-Fajou, Florian Wenzel, Manfred Opper:
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models. CoRR abs/2002.11451 (2020) - [i15]Burak Çakmak, Manfred Opper:
A Dynamical Mean-Field Theory for Learning in Restricted Boltzmann Machines. CoRR abs/2005.01560 (2020)
2010 – 2019
- 2019
- [c50]Florian Wenzel, Théo Galy-Fajou, Christian Donner, Marius Kloft, Manfred Opper:
Efficient Gaussian Process Classification Using Pólya-Gamma Data Augmentation. AAAI 2019: 5417-5424 - [c49]Michael Biehl, Nestor Caticha, Manfred Opper, Thomas Villmann:
Statistical physics of learning and inference. ESANN 2019 - [c48]Burak Çakmak, Manfred Opper:
Convergent Dynamics for Solving the TAP Equations of Ising Models with Arbitrary Rotation Invariant Coupling Matrices. ISIT 2019: 1297-1301 - [c47]Théo Galy-Fajou, Florian Wenzel, Christian Donner, Manfred Opper:
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation. UAI 2019: 755-765 - [i14]Burak Çakmak, Manfred Opper:
Convergent Dynamics for Solving the TAP Equations of Ising Models with Arbitrary Rotation Invariant Coupling Matrices. CoRR abs/1901.08583 (2019) - [i13]Théo Galy-Fajou, Florian Wenzel, Christian Donner, Manfred Opper:
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation. CoRR abs/1905.09670 (2019) - [i12]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory. CoRR abs/1910.00069 (2019) - 2018
- [j23]Christian Donner, Manfred Opper:
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes. J. Mach. Learn. Res. 19: 67:1-67:34 (2018) - [j22]Yuval Harel, Ron Meir, Manfred Opper:
Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation. Neural Comput. 30(8) (2018) - [c46]Burak Çakmak, Manfred Opper:
Expectation Propagation for Approximate Inference: Free Probability Framework. ISIT 2018: 1276-1280 - [c45]Christian Donner, Manfred Opper:
Efficient Bayesian Inference for a Gaussian Process Density Model. UAI 2018: 53-62 - [i11]Burak Çakmak, Manfred Opper:
Expectation Propagation for Approximate Inference: Free Probability Framework. CoRR abs/1801.05411 (2018) - [i10]Florian Wenzel, Théo Galy-Fajou, Christian Donner, Marius Kloft, Manfred Opper:
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation. CoRR abs/1802.06383 (2018) - [i9]Christian Donner, Manfred Opper:
Efficient Bayesian Inference for a Gaussian Process Density Model. CoRR abs/1805.11494 (2018) - [i8]Christian Donner, Manfred Opper:
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes. CoRR abs/1808.00831 (2018) - 2017
- [j21]Manfred Opper:
An estimator for the relative entropy rate of path measures for stochastic differential equations. J. Comput. Phys. 330: 127-133 (2017) - [c44]Burak Çakmak, Manfred Opper, Ole Winther, Bernard H. Fleury:
Dynamical functional theory for compressed sensing. ISIT 2017: 2143-2147 - [c43]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Perturbative Black Box Variational Inference. NIPS 2017: 5079-5088 - [i7]Burak Çakmak, Manfred Opper, Ole Winther, Bernard H. Fleury:
Dynamical Functional Theory for Compressed Sensing. CoRR abs/1705.04284 (2017) - [i6]Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt:
Perturbative Black Box Variational Inference. CoRR abs/1709.07433 (2017) - 2016
- [j20]Gina Gruenhage, Manfred Opper, Simon Barthelmé:
Visualizing the effects of a changing distance on data using continuous embeddings. Comput. Stat. Data Anal. 104: 51-65 (2016) - [i5]Burak Çakmak, Manfred Opper, Bernard H. Fleury, Ole Winther:
Self-Averaging Expectation Propagation. CoRR abs/1608.06602 (2016) - 2015
- [c42]Yuval Harel, Ron Meir, Manfred Opper:
A Tractable Approximation to Optimal Point Process Filtering: Application to Neural Encoding. NIPS 2015: 1603-1611 - [i4]Manfred Opper, Burak Çakmak, Ole Winther:
A Theory of Solving TAP Equations for Ising Models with General Invariant Random Matrices. CoRR abs/1509.01229 (2015) - 2014
- [c41]Florian Stimberg, Andreas Ruttor, Manfred Opper:
Poisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike Data. NIPS 2014: 730-738 - [c40]Alex K. Susemihl, Ron Meir, Manfred Opper:
Optimal Neural Codes for Control and Estimation. NIPS 2014: 2987-2995 - [i3]Alex K. Susemihl, Ron Meir, Manfred Opper:
Optimal Population Codes for Control and Estimation. CoRR abs/1406.7179 (2014) - 2013
- [j19]Manfred Opper, Ulrich Paquet, Ole Winther:
Perturbative corrections for approximate inference in Gaussian latent variable models. J. Mach. Learn. Res. 14(1): 2857-2898 (2013) - [c39]Hilbert J. Kappen, Vicenç Gómez, Manfred Opper:
Optimal Control as a Graphical Model Inference Problem. ICAPS 2013 - [c38]Sven Wiethölter, Andreas Ruttor, Uwe Bergemann, Manfred Opper, Adam Wolisz:
DARA: Estimating the behavior of data rate adaptation algorithms in WLAN hotspots. INFOCOM 2013: 280-284 - [c37]Botond Cseke, Manfred Opper, Guido Sanguinetti:
Approximate inference in latent Gaussian-Markov models from continuous time observations. NIPS 2013: 971-979 - [c36]Andreas Ruttor, Philipp Batz, Manfred Opper:
Approximate Gaussian process inference for the drift function in stochastic differential equations. NIPS 2013: 2040-2048 - [i2]Chris Häusler, Alex K. Susemihl, Martin P. Nawrot, Manfred Opper:
Temporal Autoencoding Improves Generative Models of Time Series. CoRR abs/1309.3103 (2013) - 2012
- [j18]Yuan Shen, Dan Cornford, Manfred Opper, Cédric Archambeau:
Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions. Comput. Stat. 27(1): 149-176 (2012) - [j17]Hilbert J. Kappen, Vicenç Gómez, Manfred Opper:
Optimal control as a graphical model inference problem. Mach. Learn. 87(2): 159-182 (2012) - [c35]Florian Stimberg, Andreas Ruttor, Manfred Opper:
Bayesian Inference for Change Points in Dynamical Systems with Reusable States - a Chinese Restaurant Process Approach. AISTATS 2012: 1117-1124 - 2011
- [j16]Fabiano L. Ribeiro, Manfred Opper:
Expectation Propagation with Factorizing Distributions: A Gaussian Approximation and Performance Results for Simple Models. Neural Comput. 23(4): 1047-1069 (2011) - [c34]Alex K. Susemihl, Ron Meir, Manfred Opper:
Analytical Results for the Error in Filtering of Gaussian Processes. NIPS 2011: 2303-2311 - [c33]Florian Stimberg, Manfred Opper, Guido Sanguinetti, Andreas Ruttor:
Inference in continuous-time change-point models. NIPS 2011: 2717-2725 - 2010
- [j15]Manfred Opper, Guido Sanguinetti:
Learning combinatorial transcriptional dynamics from gene expression data. Bioinform. 26(13): 1623-1629 (2010) - [j14]Michael Dewar, Visakan Kadirkamanathan, Manfred Opper, Guido Sanguinetti:
Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster. BMC Syst. Biol. 4: 21 (2010) - [j13]Michail D. Vrettas, Dan Cornford, Manfred Opper, Yuan Shen:
A new variational radial basis function approximation for inference in multivariate diffusions. Neurocomputing 73(7-9): 1186-1198 (2010) - [j12]Yuan Shen, Cédric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor, Remi Louis Barillec:
A Comparison of Variational and Markov Chain Monte Carlo Methods for Inference in Partially Observed Stochastic Dynamic Systems. J. Signal Process. Syst. 61(1): 51-59 (2010) - [c32]Manfred Opper, Andreas Ruttor, Guido Sanguinetti:
Approximate inference in continuous time Gaussian-Jump processes. NIPS 2010: 1831-1839 - [c31]Steffen Grünewälder, Jean-Yves Audibert, Manfred Opper, John Shawe-Taylor:
Regret Bounds for Gaussian Process Bandit Problems. AISTATS 2010: 273-280 - [c30]Andreas Ruttor, Manfred Opper:
Approximate parameter inference in a stochastic reaction-diffusion model. AISTATS 2010: 669-676 - [p1]Andreas Ruttor, Guido Sanguinetti, Manfred Opper:
Approximate Inference for Stochastic Reaction processes. Learning and Inference in Computational Systems Biology 2010: 277-296
2000 – 2009
- 2009
- [j11]Guido Sanguinetti, Andreas Ruttor, Manfred Opper, Cédric Archambeau:
Switching regulatory models of cellular stress response. Bioinform. 25(10): 1280-1286 (2009) - [j10]Ulrich Paquet, Ole Winther, Manfred Opper:
Perturbation Corrections in Approximate Inference: Mixture Modelling Applications. J. Mach. Learn. Res. 10: 1263-1304 (2009) - [j9]Manfred Opper, Cédric Archambeau:
The Variational Gaussian Approximation Revisited. Neural Comput. 21(3): 786-792 (2009) - [i1]Bert Kappen, Vicenç Gómez, Manfred Opper:
Optimal control as a graphical model inference problem. CoRR abs/0901.0633 (2009) - 2008
- [c29]Manfred Opper, Ulrich Paquet, Ole Winther:
Improving on Expectation Propagation. NIPS 2008: 1241-1248 - 2007
- [c28]Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, John Shawe-Taylor:
Variational Inference for Diffusion Processes. NIPS 2007: 17-24 - [c27]Manfred Opper, Guido Sanguinetti:
Variational inference for Markov jump processes. NIPS 2007: 1105-1112 - [c26]Cédric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor:
Gaussian Process Approximations of Stochastic Differential Equations. Gaussian Processes in Practice 2007: 1-16 - 2005
- [j8]Manfred Opper, Ole Winther:
Expectation Consistent Approximate Inference. J. Mach. Learn. Res. 6: 2177-2204 (2005) - [c25]Manfred Opper:
An Approximate Inference Approach for the PCA Reconstruction Error. NIPS 2005: 1035-1042 - 2004
- [c24]Manfred Opper, Ole Winther:
Approximate Inference in Probabilistic Models. ALT 2004: 494-504 - [c23]Manfred Opper, Ole Winther:
Expectation Consistent Free Energies for Approximate Inference. NIPS 2004: 1001-1008 - 2003
- [j7]Dörthe Malzahn, Manfred Opper:
Learning curves and bootstrap estimates for inference with Gaussian processes: A statistical mechanics study. Complex. 8(4): 57-63 (2003) - [j6]Lehel Csató, Manfred Opper, Ole Winther:
Tractable inference for probabilistic data models. Complex. 8(4): 64-68 (2003) - [j5]Dörthe Malzahn, Manfred Opper:
An Approximate Analytical Approach to Resampling Averages. J. Mach. Learn. Res. 4: 1151-1173 (2003) - [c22]Manfred Opper, Ole Winther:
Variational Linear Response. NIPS 2003: 1157-1164 - [c21]Dörthe Malzahn, Manfred Opper:
Approximate Analytical Bootstrap Averages for Support Vector Classifiers. NIPS 2003: 1189-1196 - 2002
- [j4]Yoav Freund, Manfred Opper:
Drifting Games and Brownian Motion. J. Comput. Syst. Sci. 64(1): 113-132 (2002) - [j3]Lehel Csató, Manfred Opper:
Sparse On-Line Gaussian Processes. Neural Comput. 14(3): 641-668 (2002) - [j2]Robert D. Stewart, Iris Fermin, Manfred Opper:
Region growing with pulse-coupled neural networks: an alternative to seeded region growing. IEEE Trans. Neural Networks 13(6): 1557-1562 (2002) - [c20]Dörthe Malzahn, Manfred Opper:
A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages. NIPS 2002: 327-334 - 2001
- [c19]Dörthe Malzahn, Manfred Opper:
Learning Curves for Gaussian Processes Models: Fluctuations and Universality. ICANN 2001: 271-276 - [c18]Lehel Csató, Dan Cornford, Manfred Opper:
Online Approximations for Wind-Field Models. ICANN 2001: 300-307 - [c17]Dörthe Malzahn, Manfred Opper:
A Variational Approach to Learning Curves. NIPS 2001: 463-469 - [c16]Manfred Opper, Robert Urbanczik:
Asymptotic Universality for Learning Curves of Support Vector Machines. NIPS 2001: 479-486 - [c15]Lehel Csató, Manfred Opper, Ole Winther:
TAP Gibbs Free Energy, Belief Propagation and Sparsity. NIPS 2001: 657-663 - 2000
- [j1]Manfred Opper, Ole Winther:
Gaussian Processes for Classification: Mean-Field Algorithms. Neural Comput. 12(11): 2655-2684 (2000) - [c14]Yoav Freund, Manfred Opper:
Continuous Drifting Games. COLT 2000: 126-132 - [c13]Dörthe Malzahn, Manfred Opper:
Learning Curves for Gaussian Processes Regression: A Framework for Good Approximations. NIPS 2000: 273-279 - [c12]Lehel Csató, Manfred Opper:
Sparse Representation for Gaussian Process Models. NIPS 2000: 444-450
1990 – 1999
- 1999
- [c11]Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, Ole Winther:
Efficient Approaches to Gaussian Process Classification. NIPS 1999: 251-257 - 1998
- [c10]Giancarlo Ferrari-Trecate, Christopher K. I. Williams, Manfred Opper:
Finite-Dimensional Approximation of Gaussian Processes. NIPS 1998: 218-224 - [c9]Manfred Opper, Francesco Vivarelli:
General Bounds on Bayes Errors for Regression with Gaussian Processes. NIPS 1998: 302-308 - [c8]Manfred Opper, Ole Winther:
Mean Field Methods for Classification with Gaussian Processes. NIPS 1998: 309-315 - 1997
- [c7]David Haussler, Manfred Opper:
Metric Entropy and Minimax Risk in Classification. Structures in Logic and Computer Science 1997: 212-235 - 1996
- [c6]Siegfried Bös, Manfred Opper:
Dynamics of Training. NIPS 1996: 141-147 - [c5]Manfred Opper, Ole Winther:
A Mean Field Algorithm for Bayes Learning in Large Feed-forward Neural Networks. NIPS 1996: 225-231 - 1995
- [c4]David Haussler, Manfred Opper:
General Bounds on the Mutual Information Between a Parameter and n Conditionally Independent Observations. COLT 1995: 402-411 - 1992
- [c3]H. Sebastian Seung, Manfred Opper, Haim Sompolinsky:
Query by Committee. COLT 1992: 287-294 - 1991
- [c2]Manfred Opper, David Haussler:
Calculation of the Learning Curve of Bayes Optimal Classification Algorithm for Learning a Perceptron With Noise. COLT 1991: 75-87 - [c1]David Haussler, Michael J. Kearns, Manfred Opper, Robert E. Schapire:
Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods. NIPS 1991: 855-862
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-30 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint