default search action
Yih Wang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j13]Xiaoyu Sun, Weidong Cao, Brian Crafton, Kerem Akarvardar, Haruki Mori, Hidehiro Fujiwara, Hiroki Noguchi, Yu-Der Chih, Meng-Fan Chang, Yih Wang, Tsung-Yung Jonathan Chang:
Efficient Processing of MLPerf Mobile Workloads Using Digital Compute-In-Memory Macros. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 43(4): 1191-1205 (2024) - [c21]Masaru Haraguchi, Yorinobu Fujino, Yoshisato Yokoyama, Ming-Hung Chang, Yu-Hao Hsu, Hong-Chen Cheng, Koji Nii, Yih Wang, Tsung-Yung Jonathan Chang:
15.3 A 3nm FinFET 4.3GHz 21.1Mb/mm2 Double-Pumping 1-Read and 1-Write Pseudo-2-Port SRAM with Folded-Bitline Multi-Bank Architecture. ISSCC 2024: 280-282 - [c20]Yi-Cheng Huang, Shang-Hsuan Liu, Hsu-Shun Chen, Hsin-Chang Feng, Chih-Feng Li, Chou-Ying Yang, Wei-Keng Chang, Chang-Feng Yang, Chun-Yu Wu, Yen-Cheng Lin, Tsung-Tse Yang, Chih-Yang Chang, Wen-Ting Chu, Harry Chuang, Yih Wang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
15.7 A 32Mb RRAM in a 12nm FinFet Technology with a 0.0249μm2 Bit-Cell, a 3.2GB/S Read Throughput, a 10KCycle Write Endurance and a 10-Year Retention at 105°C. ISSCC 2024: 288-290 - [c19]Ku-Feng Lin, Hiroki Noguchi, Yi-Chun Shih, Perng-Fei Yuh, Yuan-Jen Lee, Tung-Cheng Chang, Sheng-Po Huang, Yu-Fan Lin, Chun-Ying Lee, Yen-Hsiang Huang, Jui-Che Tsai, Saman Adham, Peter Noel, Ramin Yazdi, Marat Gershoig, YangJae Shin, Vineet Joshi, Ted Wong, Meng-Ru Jiang, J. J. Wu, Chun-Tai Cheng, Yu-Jen Wang, Harry Chuang, Yu-Der Chih, Yih Wang, Tsung-Yung Jonathan Chang:
15.9 A 16nm 16Mb Embedded STT-MRAM with a 20ns Write Time, a 1012 Write Endurance and Integrated Margin-Expansion Schemes. ISSCC 2024: 292-294 - [c18]Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Kinshuk Khare, Cheng-En Lee, Xiaochen Peng, Vineet Joshi, Chao-Kai Chuang, Shu-Huan Hsu, Takeshi Hashizume, Toshiaki Naganuma, Chen-Hung Tien, Yao-Yi Liu, Yen-Chien Lai, Chia-Fu Lee, Tan-Li Chou, Kerem Akarvardar, Saman Adham, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 Fully-Digital Compute-in-Memory Macro Supporting INT12 × INT12 with a Parallel-MAC Architecture and Foundry 6T-SRAM Bit Cell. ISSCC 2024: 572-574 - [c17]Ming-Chieh Huang, Wei Wing Mar, Shankar Kanade, Boris Bai, Aditya Gayatri, Krishna Khairnar, Amy Lai, Yu-Hao Hsu, Hung-Jen Liao, Yih Wang, Tsung-Yung Jonathan Chang:
A 3.3GHz 1024X640 Multi-Bank Single-Port SRAM with Frequency Enhancing Techniques and 0.55V-1.35V Wide Voltage Range Operation in 3nm FinFET for HPC Applications. VLSI Technology and Circuits 2024: 1-2 - 2023
- [j12]Masum Hossain, Arijit Raychowdhury, Sanu K. Mathew, Yakun Sophia Shao, Yih Wang:
Guest Editorial Introduction to the Special Issue on the 2022 IEEE International Solid-State Circuits Conference (ISSCC). IEEE J. Solid State Circuits 58(1): 3-7 (2023) - [c16]Haruki Mori, Wei-Chang Zhao, Cheng-En Lee, Chia-Fu Lee, Yu-Hao Hsu, Chao-Kai Chuang, Takeshi Hashizume, Hao-Chun Tung, Yao-Yi Liu, Shin-Rung Wu, Kerem Akarvardar, Tan-Li Chou, Hidehiro Fujiwara, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 4nm 6163-TOPS/W/b $\mathbf{4790-TOPS/mm^{2}/b}$ SRAM Based Digital-Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous MAC and Weight Update. ISSCC 2023: 132-133 - [c15]Po-Hao Lee, Chia-Fu Lee, Yi-Chun Shih, Hon-Jarn Lin, Yen-An Chang, Cheng-Han Lu, Yu-Lin Chen, Chieh-Pu Lo, Chung-Chieh Chen, Cheng-Hsiung Kuo, Tan-Li Chou, Chia-Yu Wang, J. J. Wu, Roger Wang, Harry Chuang, Yih Wang, Yu-Der Chih, Tsung-Yung Jonathan Chang:
A 16nm 32Mb Embedded STT-MRAM with a 6ns Read-Access Time, a 1M-Cycle Write Endurance, 20-Year Retention at 150°C and MTJ-OTP Solutions for Magnetic Immunity. ISSCC 2023: 494-495 - [c14]Wei-Xiang You, Cheng-Yin Wang, Yih Wang, Tsung-Yung Jonathan Chang, Szuya Sandy Liao:
Write-enhanced Single-ended 11T SRAM Enabling Single Bitcell Reconfigurable Compute-in-Memory Employing Complementary FETs. VLSI Technology and Circuits 2023: 1-2 - 2022
- [c13]Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Mei-Chen Chuang, Rawan Naous, Chao-Kai Chuang, Takeshi Hashizume, Dar Sun, Chia-Fu Lee, Kerem Akarvardar, Saman Adham, Tan-Li Chou, Mahmut Ersin Sinangil, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, Tsung-Yung Jonathan Chang:
A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write Operations. ISSCC 2022: 1-3 - [c12]Nail Etkin Can Akkaya, Gary Chan, Hung-Jen Liao, Yih Wang, Jonathan Chang:
A 135.6Tbps/W 2R2W SRAM with 12T Logic Bit-cell with Vmin Down to 335mV Targeted for Machine-Learning Applications in 6nm FinFET CMOS Technology. VLSI Technology and Circuits 2022: 110-111 - 2021
- [j11]Mahmut E. Sinangil, Burak Erbagci, Rawan Naous, Kerem Akarvardar, Dar Sun, Win-San Khwa, Hung-Jen Liao, Yih Wang, Jonathan Chang:
A 7-nm Compute-in-Memory SRAM Macro Supporting Multi-Bit Input, Weight and Output and Achieving 351 TOPS/W and 372.4 GOPS. IEEE J. Solid State Circuits 56(1): 188-198 (2021) - [c11]Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, Chia-Fu Lee, Rawan Naous, Yu-Lin Chen, Chieh-Pu Lo, Cheng-Han Lu, Haruki Mori, Wei-Cheng Zhao, Dar Sun, Mahmut E. Sinangil, Yen-Huei Chen, Tan-Li Chou, Kerem Akarvardar, Hung-Jen Liao, Yih Wang, Meng-Fan Chang, Tsung-Yung Jonathan Chang:
An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications. ISSCC 2021: 252-254 - [c10]Shaun Chou, Gu-Huan Li, Shawn Chen, Jun-Hao Chang, Wan-Hsueh Cheng, Shao-Ding Wu, Philex Fan, Chia-En Huang, Yu-Der Chih, Yih Wang, Jonathan Chang:
A 16Kb Antifuse One-Time-Programmable Memory in 5nm High-K Metal-Gate Fin-FET CMOS Featuring Bootstrap High Voltage Scheme, Read Endpoint Detection and Pseudo-Differential Sensing. VLSI Circuits 2021: 1-2 - 2020
- [c9]Qing Dong, Mahmut E. Sinangil, Burak Erbagci, Dar Sun, Win-San Khwa, Hung-Jen Liao, Yih Wang, Jonathan Chang:
15.3 A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro in 7nm FinFET CMOS for Machine-Learning Applications. ISSCC 2020: 242-244 - [c8]Yih Wang:
Memory for Data-Centric Computing: A Technology Perspective. VLSI-DAT 2020: 1
2010 – 2019
- 2015
- [j10]Fatih Hamzaoglu, Umut Arslan, Nabhendra Bisnik, Swaroop Ghosh, Manoj B. Lal, Nick Lindert, Mesut Meterelliyoz, Randy B. Osborne, Joodong Park, Shigeki Tomishima, Yih Wang, Kevin Zhang:
A 1 Gb 2 GHz 128 GB/s Bandwidth Embedded DRAM in 22 nm Tri-Gate CMOS Technology. IEEE J. Solid State Circuits 50(1): 150-157 (2015) - 2014
- [c7]Fatih Hamzaoglu, Umut Arslan, Nabhendra Bisnik, Swaroop Ghosh, Manoj B. Lal, Nick Lindert, Mesut Meterelliyoz, Randy B. Osborne, Joodong Park, Shigeki Tomishima, Yih Wang, Kevin Zhang:
13.1 A 1Gb 2GHz embedded DRAM in 22nm tri-gate CMOS technology. ISSCC 2014: 230-231 - [c6]Mesut Meterelliyoz, Fuad H. Al-amoody, Umut Arslan, Fatih Hamzaoglu, Luke Hood, Manoj B. Lal, Jeffrey L. Miller, Anand Ramasundar, Dan Soltman, Ifar Wan, Yih Wang, Kevin Zhang:
2nd generation embedded DRAM with 4X lower self refresh power in 22nm Tri-Gate CMOS technology. VLSIC 2014: 1-2 - 2013
- [j9]Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Fatih Hamzaoglu, Mesut Meterelliyoz, John Keane, Uddalak Bhattacharya, Kevin Zhang, Kaizad Mistry, Mark Bohr:
A 4.6 GHz 162 Mb SRAM Design in 22 nm Tri-Gate CMOS Technology With Integrated Read and Write Assist Circuitry. IEEE J. Solid State Circuits 48(1): 150-158 (2013) - 2012
- [c5]Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Fatih Hamzaoglu, Uddalak Bhattacharya, Kevin Zhang, Kaizad Mistry, Mark Bohr:
A 4.6GHz 162Mb SRAM design in 22nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry. ISSCC 2012: 230-232 - 2011
- [j8]Fatih Hamzaoglu, Yih Wang, Pramod Kolar, Liqiong Wei, Yong-Gee Ng, Uddalak Bhattacharya, Kevin Zhang:
Bit Cell Optimizations and Circuit Techniques for Nanoscale SRAM Design. IEEE Des. Test Comput. 28(1): 22-31 (2011) - [j7]Pramod Kolar, Eric Karl, Uddalak Bhattacharya, Fatih Hamzaoglu, Henry Nho, Yong-Gee Ng, Yih Wang, Kevin Zhang:
A 32 nm High-k Metal Gate SRAM With Adaptive Dynamic Stability Enhancement for Low-Voltage Operation. IEEE J. Solid State Circuits 46(1): 76-84 (2011) - 2010
- [j6]Yih Wang, Uddalak Bhattacharya, Fatih Hamzaoglu, Pramod Kolar, Yong-Gee Ng, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm High-k + Metal-Gate CMOS Technology With Integrated Power Management. IEEE J. Solid State Circuits 45(1): 103-110 (2010) - [c4]Hyunwoo Nho, Pramod Kolar, Fatih Hamzaoglu, Yih Wang, Eric Karl, Yong-Gee Ng, Uddalak Bhattacharya, Kevin Zhang:
A 32nm High-k metal gate SRAM with adaptive dynamic stability enhancement for low-voltage operation. ISSCC 2010: 346-347
2000 – 2009
- 2009
- [j5]Fatih Hamzaoglu, Kevin Zhang, Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Yong-Gee Ng, Andrei Pavlov, Ken Smits, Mark Bohr:
A 3.8 GHz 153 Mb SRAM Design With Dynamic Stability Enhancement and Leakage Reduction in 45 nm High-k Metal Gate CMOS Technology. IEEE J. Solid State Circuits 44(1): 148-154 (2009) - [j4]Muhammad M. Khellah, Nam-Sung Kim, Yibin Ye, Dinesh Somasekhar, Tanay Karnik, Nitin Borkar, Gunjan Pandya, Fatih Hamzaoglu, Tom Coan, Yih Wang, Kevin Zhang, Clair Webb, Vivek De:
Process, Temperature, and Supply-Noise Tolerant 45nm Dense Cache Arrays With Diffusion-Notch-Free (DNF) 6T SRAM Cells and Dynamic Multi-Vcc Circuits. IEEE J. Solid State Circuits 44(4): 1199-1208 (2009) - [c3]Yih Wang, Uddalak Bhattacharya, Fatih Hamzaoglu, Pramod Kolar, Yong-Gee Ng, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 4.0 GHz 291Mb voltage-scalable SRAM design in 32nm high-κ metal-gate CMOS with integrated power management. ISSCC 2009: 456-457 - 2008
- [j3]Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Tom Coan, Fatih Hamzaoglu, Walid M. Hafez, Chia-Hong Jan, Pramod Kolar, Sarvesh H. Kulkarni, Jie-Feng Lin, Yong-Gee Ng, Ian Post, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 1.1 GHz 12 µA/Mb-Leakage SRAM Design in 65 nm Ultra-Low-Power CMOS Technology With Integrated Leakage Reduction for Mobile Applications. IEEE J. Solid State Circuits 43(1): 172-179 (2008) - [c2]Fatih Hamzaoglu, Kevin Zhang, Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Yong-Gee Ng, Andrei Pavlov, Ken Smits, Mark Bohr:
A 153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduction in 45nm High-Κ Metal-Gate CMOS Technology. ISSCC 2008: 376-377 - 2007
- [c1]Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Tom Coan, Fatih Hamzaoglu, Walid M. Hafez, Chia-Hong Jan, Pramod Kolar, Sarvesh H. Kulkarni, Jie-Feng Lin, Yong-Gee Ng, Ian Post, Liqiong Wei, Yih Zhang, Kevin Zhang, Mark Bohr:
A 1.1GHz 12μA/Mb-Leakage SRAM Design in 65nm Ultra-Low-Power CMOS with Integrated Leakage Reduction for Mobile Applications. ISSCC 2007: 324-606 - 2006
- [j2]Kevin Zhang, Uddalak Bhattacharya, Zhanping Chen, Fatih Hamzaoglu, Daniel Murray, Narendra Vallepalli, Yih Wang, Bo Zheng, Mark Bohr:
A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply. IEEE J. Solid State Circuits 41(1): 146-151 (2006) - 2005
- [j1]Kevin Zhang, Uddalak Bhattacharya, Zhanping Chen, Fatih Hamzaoglu, Daniel Murray, Narendra Vallepalli, Yih Wang, Bo Zheng, Mark Bohr:
SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction. IEEE J. Solid State Circuits 40(4): 895-901 (2005)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:28 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint