default search action
Image Processing 2021: Online
- Ivana Isgum, Bennett A. Landman:
Medical Imaging 2021: Image Processing, Online, February 15-19, 2021. SPIE Proceedings 11596, SPIE 2021, ISBN 9781510640214
Awards and Plenary Session
- Rebecca R. Richards-Kortum:
Biophotonics Solutions to Global Health Challenges.
Welcome and Introduction
- Ivana Isgum, Bennett A. Landman:
Welcome and Introduction to SPIE Conference 11596.
Keynote
- Eugene Wesley Ely:
A New Frontier In Critical Care: Saving the Injured Brain in the time of COVID-19.
Deep Learning
- Xiaowan Hu, Haoqian Wang, Yi Luo, Zhongzhi Sun, Yanbin Peng:
Single MR image super-resolution via mixed self-similarity attention network. - Sidharth Abrol, Sandeep Dutta, Bipul Das, Sanjay N. T., Saad A. Sirohey:
Domain adaptation for organ segmentation from non-contrast to contrast enhanced CT. - Maria G. Baldeon Calisto, Susana K. Lai-Yuen:
EMONAS: efficient multiobjective neural architecture search framework for 3D medical image segmentation. - Irme Groothuis, Carole H. Sudre, Silvia Ingala, Josephine Barnes, Juan Domingo Gispert, Lauge Sørensen, Akshay Pai, Mads Nielsen, Sébastien Ourselin, M. Jorge Cardoso, Frederik Barkhof, Marc Modat:
Lesion-wise evaluation for effective performance monitoring of small object segmentation. - Yuzhe Lu, Haichun Yang, Zheyu Zhu, Ruining Deng, Agnes B. Fogo, Yuankai Huo:
Improve global glomerulosclerosis classification with imbalanced data using CircleMix augmentation.
Deep Dive
- Akram Bayat, Connor Anderson, Pratik Shah:
Automated end-to-end deep learning framework for classification and tumor localization from native non-stained pathology images. - Steffen Bruns, Jelmer M. Wolterink, Thomas P. W. van den Boogert, José P. Henriques, Jan Baan, Nils Planken, Ivana Isgum:
Automatic whole-heart segmentation in 4D TAVI treatment planning CT. - Sayan Ghosal, Qiang Chen, Giulio Pergola, Aaron L. Goldman, William Ulrich, Karen Faith Berman, Giuseppe Blasi, Leonardo Fazio, Antonio Rampino, Alessandro Bertolino, Daniel R. Weinberger, Venkata S. Mattay, Archana Venkataraman:
G-MIND: an end-to-end multimodal imaging-genetics framework for biomarker identification and disease classification. - Hao Li, Huahong Zhang, Hans J. Johnson, Jeffrey D. Long, Jane S. Paulsen, Ipek Oguz:
Longitudinal subcortical segmentation with deep learning. - Jörg Sander, Bob D. de Vos, Ivana Isgum:
Unsupervised super-resolution: creating high-resolution medical images from low-resolution anisotropic examples. - Hanna Siebert, Kumar T. Rajamani, Mattias P. Heinrich:
Learning inverse consistent 3D groupwise registration with deforming autoencoders.
Brain phenotypes
- Anand A. Joshi, Soyoung Choi, Jian Li, Haleh Akrami, Richard M. Leahy:
A pairwise approach for fMRI group studies using the BrainSync Transform. - Baptiste Couvy-Duchesne, Futao Zhang, Kathryn E. Kemper, Julia Sidorenko, Naomi R. Wray, Peter M. Visscher, Jian Yang, Olivier Colliot:
Association and prediction of phenotypic traits from neuroimaging data using a multi-component mixed model excluding the target vertex. - Mallika Singh, Eleanor Pahl, Shangxian Wang, Aaron Carass, Junghoon Lee, Jerry L. Prince:
Accurate estimation of total intracranial volume in MRI using a multi-tasked image-to-image translation network. - Jiahuan Song, Xinjian Chen, Weifang Zhu:
Cascaded multi-scale feature interaction for choroidal atrophy segmentation. - Satrajit Chakrabarty, Aristeidis Sotiras, Mikhail Milchenko, Pamela LaMontagne, Christopher Abraham, Clifford Robinson, Daniel S. Marcus:
BrainTumorNet: multi-task learning for joint segmentation of high-grade glioma and brain metastases from MR images.
Registration and localization
- Bo Li, Wiro J. Niessen, Stefan Klein, Mohammad Arfan Ikram, Meike W. Vernooij, Esther E. Bron:
Learning unbiased group-wise registration (LUGR) and joint segmentation: evaluation on longitudinal diffusion MRI. - Yongpei Zhu, Zicong Zhou, Guojun Liao, Kehong Yuan:
A novel unsupervised learning model for diffeomorphic image registration. - Hrishikesh Deshpande, Axel Saalbach, Tim Harder, Stewart Young, Thomas Bülow:
Deep learning for the detection of landmarks in head CT images and automatic quality assessment. - Imad Eddine Ibrahim Bekkouch, Tamerlan Aidinovich, Tomaz Vrtovec, Ramil Kuleev, Bulat Ibragimov:
Multi-agent shape models for hip landmark detection in MR scans. - Sheng Lan, Bo Yuan, Zhenhua Guo:
Graph loss function for unsupervised learning-based deformable medical image registration. - Prateek Gupta, Hanna Siebert, Mattias P. Heinrich, Kumar T. Rajamani:
DA-AR-Net: an attentive activation based Deformable auto-encoder for group-wise registration.
Modeling and Recon
- Cailey I. Kerley, Leon Y. Cai, Chang Yu, Logan M. Crawford, Jason M. Elenberger, Eden S. Singh, Kurt G. Schilling, Katherine S. Aboud, Bennett A. Landman, Tonia S. Rex:
Joint analysis of structural connectivity and cortical surface features: correlates with mild traumatic brain injury. - Andreas Wirtz, Florian Jung, Matthias Noll, Anqi Wang, Stefan Wesarg:
Automatic model-based 3-D reconstruction of the teeth from five photographs with predefined viewing directions. - Muhan Shao, Aaron Carass, Jiachen Zhuo, Xiao Liang, Dima H. Ghunaim, Maureen L. Stone, Jerry L. Prince:
Dynamic palatogram generation from Cine MRI for normalized speech assessment. - Jianing Wang, Yiyuan Zhao, Jack H. Noble, Benoit M. Dawant:
Metal artifact reduction, intra cochlear anatomy segmentation, and cochlear implant electrodes localization in CT images with a multi-task 3D network. - Hernan Carrillo, Maël Millardet, Thomas Carlier, Diana Mateus:
Low-count PET image reconstruction with Bayesian inference over a Deep Prior.
Neuroimaging
- Hao Li, Huahong Zhang, Hans J. Johnson, Jeffrey D. Long, Jane S. Paulsen, Ipek Oguz:
MRI subcortical segmentation in neurodegeneration with cascaded 3D CNNs. - Wenbo Zhang, Kwun Chuen Gary Chan, Dean Shibata, David R. Haynor:
Finding atrophy patterns of grey matter through orthonormal non-negative factorization. - Yue Liu, Dario J. Englot, Victoria L. Morgan, Warren D. Taylor, Ying Wei, Ipek Oguz, Bennett A. Landman, Ilwoo Lyu:
Establishing surface correspondence for post-surgical cortical thickness changes in temporal lobe epilepsy. - Masoomeh Rahimpour, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Karolien Goffin, Michel Koole:
Improving T1w MRI-based brain tumor segmentation using cross-modal distillation. - Kashu Yamazaki, Vidhiwar Singh Rathour, T. Hoang Ngan Le:
Invertible residual network with regularization for effective volumetric segmentation. - Ryan A. Rava, Alexander R. Podgorsak, Mohammad Waqas, Kenneth V. Snyder, Elad I. Levy, Jason M. Davies, Adnan H. Siddiqui, Ciprian N. Ionita:
Use of a convolutional neural network to identify infarct core using computed tomography perfusion parameters.
Adversarial Learning
- Chi Nok Enoch Kan, Taly Gilat Schmidt, Dong Hye Ye:
Enhancing reproductive organ segmentation in pediatric CT via adversarial learning. - Quan Liu, Isabella M. Gaeta, Bryan A. Millis, Matthew J. Tyska, Yuankai Huo:
GAN based unsupervised segmentation: should we match the exact number of objects. - Asaf Bar-El, Dana Cohen, Noa Cahan, Hayit Greenspan:
Improved CycleGAN with application to COVID-19 classification. - Jiasong Chen, Linchen Qian, Timur Urakov, Weiyong Gu, Liang Liang:
Adversarial robustness study of convolutional neural network for lumbar disk shape reconstruction from MR images. - Aji Resindra Widya, Yusuke Monno, Masatoshi Okutomi, Sho Suzuki, Takuji Gotoda, Kenji Miki:
Self-supervised monocular depth estimation in gastroendoscopy using GAN-augmented images. - Jason L. Granstedt, Varun A. Kelkar, Weimin Zhou, Mark A. Anastasio:
SlabGAN: a method for generating efficient 3D anisotropic medical volumes using generative adversarial networks. - Masaki Ikuta, Jun Zhang:
TextureWGAN: texture preserving WGAN with MLE regularizer for inverse problems.
Abdomen and pelvis
- Xiongbiao Luo, Wankang Zeng, Wenkang Fan, Song Zheng, Jianhui Chen, Rong Liu, Zengqin Liu, Yinran Chen:
Towards cascaded V-Net for automatic accurate kidney segmentation from abdominal CT images. - Mark A. Pinnock, Yipeng Hu, Steve Bandula, Dean C. Barratt:
Combined 3D super-resolution, de-noising and partial volume correction for percutaneous ablation. - Shengxue Pan, Dehui Xiang, Yun Bian, Jianping Lu, Hui Jiang, Jian Zheng:
Automatic pancreas segmentation in abdominal CT image with contrast enhancement block. - Bastien Rigaud, Pascale Béliveau, Guillaume Cazoulat, Daniel Juneau, Cynthia Ménard, Kristy K. Brock:
Automation of population-based recurrence map for PSMA-PET prostate cancer patients after prostatectomy. - Yucheng Tang, Riqiang Gao, Ho Hin Lee, Zhoubing Xu, Brent V. Savoie, Shunxing Bao, Yuankai Huo, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Jeffrey M. Spraggins, Bennett A. Landman:
Renal cortex, medulla and pelvicaliceal system segmentation on arterial phase CT images with random patch-based networks.
Chest and Cardiac imaging
- Riqiang Gao, Yucheng Tang, Kaiwen Xu, Michael N. Kammer, Sanja L. Antic, Steve Deppen, Kim L. Sandler, Pierre P. Massion, Yuankai Huo, Bennett A. Landman:
Deep multi-path network integrating incomplete biomarker and chest CT data for evaluating lung cancer risk. - Majd Zreik, Nils Hampe, Tim Leiner, Nadih Khalili, Jelmer M. Wolterink, Michiel Voskuil, Max A. Viergever, Ivana Isgum:
Combined analysis of coronary arteries and the left ventricular myocardium in cardiac CT angiography for detection of patients with functionally significant stenosis. - Kaiwen Xu, Riqiang Gao, Mirza S. Khan, Shunxing Bao, Yucheng Tang, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Mattias P. Heinrich, Bennett A. Landman:
Development and characterization of a chest CT atlas. - Enamundram M. V. Naga Karthik, Catherine Laporte, Farida Cheriet:
Three-dimensional segmentation of the scoliotic spine from MRI using unsupervised volume-based MR-CT synthesis. - Nils Hampe, Jelmer M. Wolterink, Carlos Collet, Nils Planken, Ivana Isgum:
Graph attention networks for segment labeling in coronary artery trees.
Segmentation and Modeling
- Julia M. H. Noothout, Elbrich M. Postma, Sanne Boesveldt, Bob D. de Vos, Paul A. M. Smeets, Ivana Isgum:
Automatic segmentation of the olfactory bulbs in MRI. - Muhan Shao, Arnold D. Gomez, Jiachen Zhuo, Xiao Liang, Maureen Stone, Aaron Carass, Jerry L. Prince:
Reconstruction and refinement of crossing muscle fibers in the human tongue. - Darlan M. N. de Araújo, Denis H. P. Salvadeo, Davi D. de Paula:
Denoising digital breast tomosynthesis projections using convolutional neural networks. - Rueben A. Banalagay, Robert F. Labadie, Jack H. Noble:
Validation of active shape model techniques for intra-cochlear anatomy segmentation in CT images.
Ultrasound Image Processing: Joint Session with Conferences 11596 and 11602
- Juan Carlos Prieto, Hina Shah, Alan J. Rosenbaum, Xiaoning Jiang, Patrick Musonda, Joan T. Price, Elizabeth M. Stringer, Bellington Vwalika, David M. Stamilio, Jeffrey S. A. Stringer:
An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation. - Yida Chen, Xiaoyan Zhang, Christopher M. Haggerty, Joshua V. Stough:
Assessing the generalizability of temporally coherent echocardiography video segmentation.
Emerging Applications
- Fangxu Xing, Maureen Stone, Jerry L. Prince, Xiaofeng Liu, Georges El Fakhri, Jonghye Woo:
Floor-of-the-mouth muscle function analysis using dynamic magnetic resonance imaging. - Seyed Mostafa Mousavi Kahaki, Hang Deng, Armen Stepanyants:
Correction of topological errors in automated traces of neurites. - Jared Vicory, Ramraj Chandradevan, Pablo Hernandez-Cerdan, Wei Angel Huang, Dani Fox, Laith Abu Qdais, Matthew McCormick, André Mol, Rick Walter, J. S. Marron, Hassem Geha, Asma Khan, Beatriz Paniagua:
Dental microfracture detection using wavelet features and machine learning. - Yuanyuan Peng, Weifang Zhu, Feng Chen, Xinjian Chen:
Automated zone recognition for retinopathy of prematurity using deep neural network with attention mechanism and deep supervision strategy. - Ho Hin Lee, Yucheng Tang, Kaiwen Xu, Shunxing Bao, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Mattias P. Heinrich, Jeffrey M. Spraggins, Yuankai Huo, Bennett A. Landman:
Construction of a multi-phase contrast computed tomography kidney atlas. - Nathan R. Huber, Andrew D. Missert, Hao Gong, Scott S. Hsieh, Shuai Leng, Lifeng Yu, Cynthia H. McCollough:
Random search as a neural network optimization strategy for Convolutional-Neural-Network (CNN)-based noise reduction in CT.
Poster Session
- Yang Lei, Zhen Tian, Tonghe Wang, Justin Roper, Kristin Higgins, Jeffrey D. Bradley, Walter J. Curran, Tian Liu, Xiaofeng Yang:
Deep learning-based 3D image generation using a single 2D projection image. - Qianlong Zhu, Gaohui Luo, Xinjian Chen, Fei Shi, Lingjiao Pan, Weifang Zhu:
Joint optic disc and cup segmentation based on multi-module U-shaped network. - Chang Yu, Yue Liu, Leon Y. Cai, Cailey I. Kerley, Kaiwen Xu, Warren D. Taylor, Hakmook Kang, Andrea T. Shafer, Lori L. Beason-Held, Susan M. Resnick, Bennett A. Landman, Ilwoo Lyu:
Validation of group-wise registration for surface-based functional MRI analysis. - Tonghe Wang, Yang Lei, Mark McDonald, Jonathan J. Beitler, Walter J. Curran, Tian Liu, Xiaofeng Yang:
Multi-organ segmentation on head and neck dual-energy CT using Deep Neural Networks. - Richard L. J. Qiu, Yang Lei, Aparna H. Kesarwala, Kristin Higgins, Jeffrey D. Bradley, Walter J. Curran, Tian Liu, Xiaofeng Yang:
Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching. - Yabo Fu, Yang Lei, Tonghe Wang, Sibo Tian, Pretesh Patel, Ashesh B. Jani, Walter J. Curran, Tian Liu, Xiaofeng Yang:
Daily cone-beam CT multi-organ segmentation for prostate adaptive radiotherapy. - Changqing Yang, Xinjian Chen, Jinzhu Su, Weifang Zhu, Qiuying Chen, Jiayi Yu, Ying Fan, Fei Shi:
Segmentation of retinal detachment and retinoschisis in OCT images based on improved U-shaped network with cross-fusion global feature module. - Yanqing Ye, Xinjian Chen, Fei Shi, Dehui Xiang, Lingjiao Pan, Weifang Zhu:
Context attention-and-fusion network for multiclass retinal fluid segmentation in OCT images. - Xianjin Dai, Yang Lei, James Janopaul-Naylor, Tonghe Wang, Justin Roper, Jun Zhou, Walter J. Curran, Tian Liu, Pretesh Patel, Xiaofeng Yang:
Synthetic CT-based multi-organ segmentation in cone beam CT for adaptive pancreatic radiotherapy. - Antong Chen, Saideep Gona, Dahai Xue, Tosha Shah, Alexa Gleason, Barbara Robinson, Britta Mattson, Catherine D. G. Hines:
Automated localization and segmentation of vertebrae in the micro-CT images of rabbit fetuses using 3D Convolutional Neural Networks. - Vahid Daneshpajooh, Saptarashmi Bandyopadhyay, Danish Ahmad, Jennifer Toth, Rebecca Bascom, William E. Higgins:
Super-resolution and deblurring enhancement for narrow band imaging bronchoscopy. - Priscilla Cho, Hong-Jun Yoon:
Evaluation of U-net-based image segmentation model to digital mammography. - Hee Rim Yun, Min Jin Lee, Helen Hong, Kyu Won Shim, Jonghong Jeon:
Improvement of inter-slice resolution based on 2D CNN with thin bone structure-aware on head-and-neck CT images. - Di Liu, Jiang Liu, Yihao Liu, Ran Tao, Jerry L. Prince, Aaron Carass:
Label super resolution for 3D magnetic resonance images using deformable U-net. - Utkarsh Agrawal, Aditya Hegde, Rajesh Langoju, Prasad Sudhakar, Bhushan D. Patil, Sundar R. K., Yasuhiro Imai, Risa Shigemasa, Omi Yasuo, Bipul Das:
Enhancing Z-resolution in CT volumes with deep residual learning. - Zhuoran Huang, Naoki Sunaguchi, Daisuke Shimao, Shu Ichihara, Tetsuya Yuasa, Masami Ando:
Ring artifact removal method with generative adversarial network for the refraction-contrast computed tomography. - Louis Boubolo, Maxime Dumont, Serge Brosset, Jonas Bianchi, Antonio C. Ruellas, Marcela Gurgel, Camila Massaro, Aron Aliaga Del Castillo, Marcos Ioshida, Marilia Yatabe, Erika Benavides, Hector Rios, Fabiana Soki, Gisele Neiva, Beatriz Paniagua, Lucia H. S. Cevidanes, Martin Styner, Juan Carlos Prieto:
FlyBy CNN: a 3D surface segmentation framework. - Yang Lei, Yabo Fu, Tonghe Wang, Walter J. Curran, Tian Liu, Pretesh Patel, Xiaofeng Yang:
Prostate dose prediction in HDR Brachytherapy using unsupervised multi-atlas fusion. - Mulin Cai, Dehui Xiang, Shengxue Pan, Fei Shi, Weifang Zhu, Xinjian Chen, Bei Tian:
A generative adversarial framework for capillary non-perfusion regions segmentation in fundus fluorescein angiograms. - Magnus Magnusson, Áskell Löve, Lotta Maria Ellingsen:
Automated brainstem parcellation using multi-atlas segmentation and deep neural network. - V. de Vos, Kimberley M. Timmins, Irene C. van der Schaaf, Ynte M. Ruigrok, Birgitta K. Velthuis, Hugo J. Kuijf:
Automatic cerebral vessel extraction in TOF-MRA using deep learning. - Luis Albert Zavala-Mondragón, Klaus J. Engel, Bernd Menser, Danny Ruijters, Peter H. N. de With, Fons van der Sommen:
Iterative reconstruction anti-correlated ROF model for noise reduction in dual-energy CBCT imaging. - Shashank N. Sridhara, Haleh Akrami, Vaishnavi Krishnamurthy, Anand A. Joshi:
Bias field correction in 3D-MRIs using convolutional autoencoders. - Huiqiao Xie, Yang Lei, Tonghe Wang, Yabo Fu, Xiangyang Tang, Walter J. Curran, Pretesh Patel, Tian Liu, Xiaofeng Yang:
Deep learning-based deformable image registration of inter-fraction CBCT images for adaptive radiation therapy. - Gianmarco Santini, Yvon Nzoughet Obame, Constance Fourcade, Noémie Moreau, Mathieu Rubeaux:
Automatic classification of benign and malignant kidney masses using radiomics. A retrospective study exploiting the KiTS19 dataset. - Gustavo R. Pinheiro, Lorenza Brusini, Albulena Bajrami, Francesca B. Pizzini, Massimiliano Calabrese, Fabiano Reis, Simone Appenzeller, Gloria Menegaz, Letícia Rittner:
Diffusion MRI and silver standard masks to improve CNN-based thalamus segmentation. - Changxing Yang, Dehui Xiang, Yun Bian, Jianping Lu, Hui Jiang, Jianming Zheng:
Gland segmentation in pancreas histopathology images based on selective multi-scale attention. - Vincent Wang, Alice Wei, Jiaxing Tan, Siming Lu, Weiguo Cao, Yongfeng Gao:
A comparison study of deep learning designs for improving low-dose CT denoising. - Zhongshu Zheng, Ling Ma, Songxiao Yang, Said Boumaraf, Xiabi Liu, Xiaohong Ma:
U-SDRC: a novel deep learning-based method for lesion enhancement in liver CT images. - Zhangxing Bian, Jiayang Zhong, Charles R. Hatt, Nicholas S. Burris:
A deformable image registration based method to assess directionality of thoracic aortic aneurysm growth. - Yunkun Bai, Guangmin Sun, Yu Li, Le Shen, Li Zhang:
Progressive medical image annotation with convolutional neural network-based interactive segmentation method. - Simon John Christoph Soerensen, Richard E. Fan, Arun Seetharaman, Leo C. Chen, Wei Shao, Indrani Bhattacharya, Michael Borre, Benjamin Chung, Katherine J. To'o, Geoffrey A. Sonn, Mirabela Rusu:
ProGNet: prostate gland segmentation on MRI with deep learning. - Mia Mojica, Mehran Ebrahimi:
Motion correction in dynamic contrast-enhanced magnetic resonance images using pharmacokinetic modeling. - Ange Lou, Shuyue Guan, Murray H. Loew:
DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. - Durai Arun Pannir Selvam, David I. Laurenson, William H. Nailon, Duncan B. McLaren:
Localised 3D disparity regularisation for improving contour propagation in Adaptive Radiotherapy. - Yichao Diao, Xinjian Chen, Ying Fan, Jiamin Xie, Qiuying Chen, Lingjiao Pan, Weifang Zhu:
Segmentation of RBCC disruption and myopic stretch line in retinal OCT images using an improved U-shape network. - Roee Zamir, Shai Bagon, David Samocha, Yael Yagil, Ronen Basri, Miri Sklair-Levy, Meirav Galun:
Segmenting microcalcifications in mammograms and its applications. - Alessio Gallucci, Nicola Pezzotti, Dmitry Znamenskiy, Milan Petkovic:
A latent space exploration for microscopic skin lesion augmentations with VQ-VAE-2 and PixelSNAIL. - Chenpu Yao, Weifang Zhu, Meng Wang, Liangjiu Zhu, Haifan Huang, Haoyu Chen, Xinjian Chen:
SANet: a self-adaptive network for hyperreflective foci segmentation in retinal OCT images. - Abum Okemgbo, David Rein, Yiyang Wang, Amani A. Fawzi, Jacob Furst, Daniela Raicu:
Drusen segmentation with sparse volumetric SD-OCT sampling. - Leon Y. Cai, Cailey I. Kerley, Chang Yu, Katherine S. Aboud, Lori L. Beason-Held, Andrea T. Shafer, Susan M. Resnick, Lori C. Jordan, Adam W. Anderson, Kurt G. Schilling, Ilwoo Lyu, Bennett A. Landman:
Joint cortical surface and structural connectivity analysis of Alzheimer's disease. - Dana Cohen Hochberg, Raja Giryes, Hayit Greenspan:
Style encoding for class-specific image generation. - Tonghe Wang, Yang Lei, Sibo Tian, Tian Liu, Walter J. Curran, Kristin Higgins, Xiaofeng Yang:
Lung tumor segmentation of PET/CT using dual pyramid mask R-CNN. - Jieyu Li, Jayaram K. Udupa, Yubing Tong, Dewey Odhner, Drew A. Torigian:
Anatomy recognition in CT images of head and neck region via precision atlases. - Shangxian L. Wang, Shuo Han, Aaron Carass, Jiachen Zhuo, Steve Roys, Rao P. Gullapalli, Li Jiang, Jerry L. Prince:
Thalamus segmentation using convolutional neural networks. - Endi Selmanaj, Fons van der Sommen, Sanne E. Okel, Joost van der Putten, Maarten R. Struyvenberg, Jacques J. G. H. M. Bergman, Peter H. N. de With:
Fast tissue detection in volumetric laser endomicroscopy using convolutional neural networks: an object-detection approach. - Adrianna Janik, Jonathan Dodd, Georgiana Ifrim, Kris Sankaran, Kathleen M. Curran:
Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset. - Can Luo, James G. Terry, Yucheng Tang, Kaiwen Xu, Pierre P. Massion, Bennett A. Landman, Jeffrey Carr, Yuankai Huo:
Measure partial liver volumetric variations from paired inspiratory-expiratory chest CT scans. - Stephen Gregory, Hu Cheng, Sharlene D. Newman, Yu Gan:
HydraNet: a multi-branch convolutional neural network architecture for MRI denoising. - Shaoju Wu, Yunliang Cai, Xiaoyao Fan, Sohail K. Mirza, Keith D. Paulsen, Songbai Ji:
A vertebral level-wise data augmentation scheme for segmentation via deep learning. - Kimberley M. Timmins, Irene C. van der Schaaf, Ynte M. Ruigrok, Birgitta K. Velthuis, Hugo J. Kuijf:
Variational autoencoders with a structural similarity loss in time of flight MRAs. - Gaohui Luo, Qianlong Zhu, Xinjian Chen, Fei Shi, Ying Fan, Jiamin Xie, Qiuying Chen, Lingjiao Pan, Weifang Zhu:
SGCNet: a scale-aware and global context network for linear lesion segmentation in MCSL fundus images of high myopia. - Yimeng Dou, Yi-Hua Tsai, Chih-Chieh Liu, Brad A. Hobson, Pamela J. Lein:
Co-localization of fluorescent signals using deep learning with Manders overlapping coefficient. - Yunzhen Peng, Xinjian Chen, Dehui Xiang, Gaohui Luo, Mulin Cai:
Keypoint matching networks for longitudinal fundus image affine registration. - Vanika Singhal, Rajesh Langoju, Sidharth Abrol, Utkarsh Agrawal, Bhushan D. Patil, Sandeep Dutta, Bipul Das:
Noise characteristics in low to high kVp domain translation with Deep Regression Network. - Tong Zheng, Masahiro Oda, Chenglong Wang, Takayasu Moriya, Yuichiro Hayashi, Yoshito Otake, Masahiro Hashimoto, Toshiaki Akashi, Masaki Mori, Hirotsugu Takabatake, Hiroshi Natori, Kensaku Mori:
Unsupervised segmentation of COVID-19 infected lung clinical CT volumes using image inpainting and representation learning. - Mohamed I. Elbakary, Khan Iftekharuddin:
COVID-19 detection using image analysis methods on CT images. - Keyur D. Shah, James A. Shackleford, Nagarajan Kandasamy, Gregory C. Sharp:
Improving deformable image registration accuracy using a hybrid similarity metric for adaptive radiation therapy. - Syed Ahmed Nadeem, Alejandro P. Comellas, Eric A. Hoffman, Punam K. Saha:
Generalizability of a deep learning airway segmentation algorithm to a blinded low-dose CT dataset. - Pedro Furtado:
Deep segmentation of abdominal organs from MRI: off-the- shelf architectures and improvements. - Kathleen E. Larson, Ipek Oguz:
Synthetic atrophy for longitudinal surface-based cortical thickness measurement.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.