default search action
Michael Zibulevsky
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2020
- [j28]Gil Shamai, Michael Zibulevsky, Ron Kimmel:
Efficient Inter-Geodesic Distance Computation and Fast Classical Scaling. IEEE Trans. Pattern Anal. Mach. Intell. 42(1): 74-85 (2020) - [j27]Tao Hong, Irad Yavneh, Michael Zibulevsky:
Solving RED With Weighted Proximal Methods. IEEE Signal Process. Lett. 27: 501-505 (2020) - [c39]Tomer Weiss, Sanketh Vedula, Ortal Senouf, Oleg V. Michailovich, Michael Zibulevsky, Alexander M. Bronstein:
Joint Learning of Cartesian under Sampling Andre Construction for Accelerated MRI. ICASSP 2020: 8653-8657 - [i21]Yoni Choukroun, Michael Zibulevsky, Pavel Kisilev:
Primal-Dual Sequential Subspace Optimization for Saddle-point Problems. CoRR abs/2008.09149 (2020)
2010 – 2019
- 2019
- [c38]Ortal Senouf, Sanketh Vedula, Tomer Weiss, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Self-supervised Learning of Inverse Problem Solvers in Medical Imaging. DART/MIL3ID@MICCAI 2019: 111-119 - [c37]Sanketh Vedula, Ortal Senouf, Grigoriy Zurakhov, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Learning beamforming in ultrasound imaging. MIDL 2019: 493-511 - [i20]Tomer Weiss, Sanketh Vedula, Ortal Senouf, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Learning Fast Magnetic Resonance Imaging. CoRR abs/1905.09324 (2019) - [i19]Ortal Senouf, Sanketh Vedula, Tomer Weiss, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Self-supervised learning of inverse problem solvers in medical imaging. CoRR abs/1905.09325 (2019) - [i18]Samah Khawaled, Michael Zibulevsky, Yehoshua Y. Zeevi:
Texture and Structure Two-view Classification of Images. CoRR abs/1908.09264 (2019) - [i17]Tomer Weiss, Ortal Senouf, Sanketh Vedula, Oleg V. Michailovich, Michael Zibulevsky, Alexander M. Bronstein:
PILOT: Physics-Informed Learned Optimal Trajectories for Accelerated MRI. CoRR abs/1909.05773 (2019) - 2018
- [c36]Ortal Senouf, Sanketh Vedula, Grigoriy Zurakhov, Alexander M. Bronstein, Michael Zibulevsky, Oleg V. Michailovich, Dan Adam, David Blondheim:
High Frame-Rate Cardiac Ultrasound Imaging with Deep Learning. MICCAI (1) 2018: 126-134 - [c35]Sanketh Vedula, Ortal Senouf, Grigoriy Zurakhov, Alexander M. Bronstein, Michael Zibulevsky, Oleg V. Michailovich, Dan Adam, Diana Gaitini:
High Quality Ultrasonic Multi-line Transmission Through Deep Learning. MLMIR@MICCAI 2018: 147-155 - [i16]Sanketh Vedula, Ortal Senouf, Grigoriy Zurakhov, Alexander M. Bronstein, Michael Zibulevsky, Oleg V. Michailovich, Dan Adam, Diana Gaitini:
High quality ultrasonic multi-line transmission through deep learning. CoRR abs/1808.07819 (2018) - [i15]Ortal Senouf, Sanketh Vedula, Grigoriy Zurakhov, Alexander M. Bronstein, Michael Zibulevsky, Oleg V. Michailovich, Dan Adam, David Blondheim:
High frame-rate cardiac ultrasound imaging with deep learning. CoRR abs/1808.07823 (2018) - [i14]Tao Hong, Irad Yavneh, Michael Zibulevsky:
Accelerating Multigrid Optimization via SESOP. CoRR abs/1812.06896 (2018) - [i13]Sanketh Vedula, Ortal Senouf, Grigoriy Zurakhov, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Learning beamforming in ultrasound imaging. CoRR abs/1812.08043 (2018) - 2017
- [c34]Amir Adler, David Boublil, Michael Zibulevsky:
Block-based compressed sensing of images via deep learning. MMSP 2017: 1-6 - [i12]Dan Elbaz, Michael Zibulevsky:
End to End Deep Neural Networks Radio Receiver for Speech Signals. CoRR abs/1704.02046 (2017) - [i11]Dan Elbaz, Michael Zibulevsky:
Perceptual audio loss function for deep learning. CoRR abs/1708.05987 (2017) - [i10]Sanketh Vedula, Ortal Senouf, Alexander M. Bronstein, Oleg V. Michailovich, Michael Zibulevsky:
Towards CT-quality Ultrasound Imaging using Deep Learning. CoRR abs/1710.06304 (2017) - 2016
- [j26]Gregory Vaksman, Michael Zibulevsky, Michael Elad:
Patch Ordering as a Regularization for Inverse Problems in Image Processing. SIAM J. Imaging Sci. 9(1): 287-319 (2016) - [j25]Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad:
Trainlets: Dictionary Learning in High Dimensions. IEEE Trans. Signal Process. 64(12): 3180-3193 (2016) - [c33]Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky:
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques. NIPS 2016: 1534-1542 - [i9]Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad:
Trainlets: Dictionary Learning in High Dimensions. CoRR abs/1602.00212 (2016) - [i8]Gregory Vaksman, Michael Zibulevsky, Michael Elad:
Patch-Ordering as a Regularization for Inverse Problems in Image Processing. CoRR abs/1602.08510 (2016) - [i7]Amir Adler, David Boublil, Michael Elad, Michael Zibulevsky:
A Deep Learning Approach to Block-based Compressed Sensing of Images. CoRR abs/1606.01519 (2016) - [i6]Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky:
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques. CoRR abs/1609.00629 (2016) - [i5]Amir Adler, Michael Elad, Michael Zibulevsky:
Compressed Learning: A Deep Neural Network Approach. CoRR abs/1610.09615 (2016) - [i4]Gil Shamai, Michael Zibulevsky, Ron Kimmel:
Fast Classical Scaling. CoRR abs/1611.07356 (2016) - 2015
- [j24]David Boublil, Michael Elad, Joseph Shtok, Michael Zibulevsky:
Spatially-Adaptive Reconstruction in Computed Tomography Using Neural Networks. IEEE Trans. Medical Imaging 34(7): 1474-1485 (2015) - [c32]Gil Shamai, Michael Zibulevsky, Ron Kimmel:
Accelerating the Computation of Canonical Forms for 3D Nonrigid Objects using Multidimensional Scaling. 3DOR@Eurographics 2015: 71-78 - [c31]Gil Shamai, Yonathan Aflalo, Michael Zibulevsky, Ron Kimmel:
Classical Scaling Revisited. ICCV 2015: 2255-2263 - 2014
- [i3]Michael Zibulevsky:
Speeding-Up Convergence via Sequential Subspace Optimization: Current State and Future Directions. CoRR abs/1401.0159 (2014) - 2013
- [j23]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Learned Shrinkage Approach for Low-Dose Reconstruction in Computed Tomography. Int. J. Biomed. Imaging 2013: 609274:1-609274:20 (2013) - [j22]Yonathan Aflalo, Ron Kimmel, Michael Zibulevsky:
Conformal Mapping with as Uniform as Possible Conformal Factor. SIAM J. Imaging Sci. 6(1): 78-101 (2013) - [i2]Joseph Shtok, Michael Zibulevsky, Michael Elad:
Spatially-Adaptive Reconstruction in Computed Tomography using Neural Networks. CoRR abs/1311.7251 (2013) - 2012
- [e1]Fabian J. Theis, Andrzej Cichocki, Arie Yeredor, Michael Zibulevsky:
Latent Variable Analysis and Signal Separation - 10th International Conference, LVA/ICA 2012, Tel Aviv, Israel, March 12-15, 2012. Proceedings. Lecture Notes in Computer Science 7191, Springer 2012, ISBN 978-3-642-28550-9 [contents] - 2011
- [c30]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Sparsity-based Sinogram Denoising for low-dose Computed Tomography. ICASSP 2011: 569-572 - 2010
- [j21]Michael Zibulevsky, Michael Elad:
L1-L2 Optimization in Signal and Image Processing. IEEE Signal Process. Mag. 27(3): 76-88 (2010) - [j20]Ron Rubinstein, Michael Zibulevsky, Michael Elad:
Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process. 58(3): 1553-1564 (2010) - [i1]Joseph Shtok, Michael Zibulevsky, Michael Elad:
Spatially-Adaptive Reconstruction in Computed Tomography Based on Statistical Learning. CoRR abs/1004.4373 (2010)
2000 – 2009
- 2009
- [j19]Grigory Begelman, Michael Zibulevsky, Ehud Rivlin, Tsafrir Kolatt:
Blind Decomposition of Transmission Light Microscopic Hyperspectral Cube Using Sparse Representation. IEEE Trans. Medical Imaging 28(8): 1317-1324 (2009) - [c29]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Direct Adaptive Algorithms for CT Reconstruction. ISBI 2009: 181-184 - [c28]Eliyahu Osherovich, Michael Zibulevsky, Irad Yavneh:
Fast Reconstruction Method for Diffraction Imaging. ISVC (2) 2009: 1063-1072 - 2008
- [j18]Sarit Shwartz, Yoav Y. Schechner, Michael Zibulevsky:
Blind separation of convolutive image mixtures. Neurocomputing 71(10-12): 2164-2179 (2008) - [j17]Alfred M. Bruckstein, Michael Elad, Michael Zibulevsky:
On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations. IEEE Trans. Inf. Theory 54(11): 4813-4820 (2008) - [c27]Alfred M. Bruckstein, Michael Elad, Michael Zibulevsky:
On the uniqueness of non-negative sparse & redundant representations. ICASSP 2008: 5145-5148 - 2007
- [p1]Michael Zibulevsky:
Relative Newton and Smoothing Multiplier Optimization Methods for Blind Source Separation. Blind Speech Separation 2007: 193-214 - 2006
- [j16]Dmitri Model, Michael Zibulevsky:
Learning subject-specific spatial and temporal filters for single-trial EEG classification. NeuroImage 32(4): 1631-1641 (2006) - [j15]Dmitri Model, Michael Zibulevsky:
Signal reconstruction in sensor arrays using sparse representations. Signal Process. 86(3): 624-638 (2006) - [c26]Michael Elad, Boaz Matalon, Michael Zibulevsky:
Image Denoising with Shrinkage and Redundant Representations. CVPR (2) 2006: 1924-1931 - [c25]Sarit Shwartz, Yoav Y. Schechner, Michael Zibulevsky:
Efficient Separation of Convolutive Image Mixtures. ICA 2006: 246-253 - [c24]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
On Separation of Semitransparent Dynamic Images from Static Background. ICA 2006: 934-940 - 2005
- [j14]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Sparse ICA for blind separation of transmitted and reflected images. Int. J. Imaging Syst. Technol. 15(1): 84-91 (2005) - [j13]Sarit Shwartz, Michael Zibulevsky, Yoav Y. Schechner:
Fast kernel entropy estimation and optimization. Signal Process. 85(5): 1045-1058 (2005) - [j12]Michael M. Bronstein, Alexander M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Blind deconvolution of images using optimal sparse representations. IEEE Trans. Image Process. 14(6): 726-736 (2005) - [j11]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
Relative optimization for blind deconvolution. IEEE Trans. Signal Process. 53(6): 2018-2026 (2005) - [j10]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
Quasi maximum likelihood MIMO blind deconvolution: Super- and sub-Gaussianity versus consistency. IEEE Trans. Signal Process. 53(7): 2576-2579 (2005) - [c23]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Blind separation of tissues in multi-modal MRI using Sparse Component Analysis. EUSIPCO 2005: 1-4 - [c22]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
"Unmixing" tissues: sparse component analysis in multi-contrast MRI. ICIP (2) 2005: 1282-1285 - 2004
- [j9]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
Blind source separation using block-coordinate relative Newton method. Signal Process. 84(8): 1447-1459 (2004) - [c21]Dmitri Model, Michael Zibulevsky:
Signal Reconstruction in Sensor Arrays Using Temporal-Spatial Sparsity Regularization. ICA 2004: 319-326 - [c20]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
Blind Source Separation Using the Block-Coordinate Relative Newton Method. ICA 2004: 406-413 - [c19]Sarit Shwartz, Michael Zibulevsky, Yoav Y. Schechner:
ICA Using Kernel Entropy Estimation with NlogN Complexity. ICA 2004: 422-429 - [c18]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Optimal Sparse Representations for Blind Deconvolution of Images. ICA 2004: 500-507 - [c17]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky:
Blind Deconvolution Using the Relative Newton Method. ICA 2004: 554-561 - [c16]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
QML Blind Deconvolution: Asymptotic Analysis. ICA 2004: 677-684 - [c15]Alexey Polonsky, Michael Zibulevsky:
MEG/EEG Source Localization Using Spatio-temporal Sparse Representations. ICA 2004: 1001-1008 - [c14]Alexander M. Bronstein, Michael Zibulevsky, Michael M. Bronstein, Yehoshua Y. Zeevi:
Fast relative newton algorithm for blind deconvolution of images. ICIP 2004: 1233-1236 - [c13]Michael M. Bronstein, Alexander M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Optimal sparse representations for blind source separation and blind deconvolution: a learning approach. ICIP 2004: 1815-1818 - [c12]Michael M. Bronstein, Alexander M. Bronstein, Yehoshua Y. Zeevi, Michael Zibulevsky:
Quasi-Maximum Likelihood Blind Deconvolution of Images Acquired Through Scattering Media. ISBI 2004: 352-355 - 2003
- [j8]Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:
A Multiscale Framework For Blind Separation of Linearly Mixed Signals. J. Mach. Learn. Res. 4: 1339-1363 (2003) - [c11]Michael Zibulevsky:
Relative Newton method for signal separation. ICASSP (5) 2003: 29-32 - [c10]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Separation of semireflective layers using sparse ICA. ICASSP (3) 2003: 733-736 - [c9]Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:
Blind separation of mixed images using multiscale transforms. ICIP (1) 2003: 309-312 - [c8]Michael M. Bronstein, Alexander M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Separation of reflections via sparse ICA. ICIP (1) 2003: 313-316 - [c7]Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:
Blind separation of mixed images using multiscale transforms. VCIP 2003: 990-997 - 2002
- [j7]Michael Zibulevsky, Yehoshua Y. Zeevi:
Extraction of a source from multichannel data using sparse decomposition. Neurocomputing 49(1-4): 163-173 (2002) - [j6]Michael M. Bronstein, Alexander M. Bronstein, Michael Zibulevsky, Haim Azhari:
Reconstruction in Diffraction Ultrasound Tomography Using Non-Uniform FFT. IEEE Trans. Medical Imaging 21(11): 1395-1401 (2002) - [c6]Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, Yehoshua Y. Zeevi:
Optimal nonlinear estimation of photon coordinates in PET. ISBI 2002: 541-544 - [c5]Michael M. Bronstein, Alexander M. Bronstein, Michael Zibulevsky:
Iterative reconstruction in diffraction tomography using nonuniform fast Fourier transform. ISBI 2002: 633-636 - 2001
- [j5]Michael Zibulevsky, Barak A. Pearlmutter:
Blind Source Separation by Sparse Decomposition in a Signal Dictionary. Neural Comput. 13(4): 863-882 (2001) - [j4]Pau Bofill, Michael Zibulevsky:
Underdetermined blind source separation using sparse representations. Signal Process. 81(11): 2353-2362 (2001) - [j3]Ron Lekkvkovitz, Dmitry Falikman, Michael Zibulevsky, Aharon Ben-Tal, Arkadi Nemirovski:
The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3D Listmode Data. IEEE Trans. Medical Imaging 20(7): 633-642 (2001) - [c4]Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:
Blind source separation using multinode sparse representation. ICIP (3) 2001: 202-205 - [c3]Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:
Wavelet representation and total variation regularization in emission tomography. ICIP (1) 2001: 702-705 - [c2]Michael Zibulevsky, Pavel Kisilev, Yehoshua Y. Zeevi, Barak A. Pearlmutter:
Blind Source Separation via Multinode Sparse Representation. NIPS 2001: 1049-1056 - 2000
- [j2]Akaysha C. Tang, Barak A. Pearlmutter, Michael Zibulevsky, Scott A. Carter:
Blind source separation of multichannel neuromagnetic responses. Neurocomputing 32-33: 1115-1120 (2000)
1990 – 1999
- 1999
- [c1]Akaysha C. Tang, Barak A. Pearlmutter, Tim A. Hely, Michael Zibulevsky, Michael P. Weisend:
An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task. NIPS 1999: 185-191 - 1997
- [j1]Aharon Ben-Tal, Michael Zibulevsky:
Penalty/Barrier Multiplier Methods for Convex Programming Problems. SIAM J. Optim. 7(2): 347-366 (1997)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-13 00:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint