default search action
Daniele Malitesta
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j2]Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato:
Report on the 1st International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024) at ECIR 2024. SIGIR Forum 58(1): 1-4 (2024) - [j1]Daniele Malitesta:
Graph Neural Networks for Recommendation Leveraging Multimodal Information. SIGIR Forum 58(1): 1-2 (2024) - [c26]Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato:
First International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024). ECIR (5) 2024: 415-421 - [c25]George Panagopoulos, Daniele Malitesta, Fragkiskos D. Malliaros, Jun Pang:
Uplift Modeling Under Limited Supervision. ECML/PKDD (6) 2024: 127-144 - [c24]Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria Mancino, Tommaso Di Noia, Eugenio Di Sciascio:
A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph. RecSys 2024: 549-559 - [c23]Matteo Attimonelli, Danilo Danese, Daniele Malitesta, Claudio Pomo, Giuseppe Gassi, Tommaso Di Noia:
Ducho 2.0: Towards a More Up-to-Date Unified Framework for the Extraction of Multimodal Features in Recommendation. WWW (Companion Volume) 2024: 1075-1078 - [i17]Matteo Attimonelli, Danilo Danese, Daniele Malitesta, Claudio Pomo, Giuseppe Gassi, Tommaso Di Noia:
Ducho 2.0: Towards a More Up-to-Date Unified Framework for the Extraction of Multimodal Features in Recommendation. CoRR abs/2403.04503 (2024) - [i16]George Panagopoulos, Daniele Malitesta, Fragkiskos D. Malliaros, Jun Pang:
Graph Neural Networks for Treatment Effect Prediction. CoRR abs/2403.19289 (2024) - [i15]Daniele Malitesta, Emanuele Rossi, Claudio Pomo, Fragkiskos D. Malliaros, Tommaso Di Noia:
Dealing with Missing Modalities in Multimodal Recommendation: a Feature Propagation-based Approach. CoRR abs/2403.19841 (2024) - [i14]Salvatore Bufi, Alberto Carlo Maria Mancino, Antonio Ferrara, Daniele Malitesta, Tommaso Di Noia, Eugenio Di Sciascio:
KGUF: Simple Knowledge-aware Graph-based Recommender with User-based Semantic Features Filtering. CoRR abs/2403.20095 (2024) - [i13]Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria Mancino, Tommaso Di Noia, Eugenio Di Sciascio:
A Novel Evaluation Perspective on GNNs-based Recommender Systems through the Topology of the User-Item Graph. CoRR abs/2408.11762 (2024) - [i12]Daniele Malitesta, Emanuele Rossi, Claudio Pomo, Tommaso Di Noia, Fragkiskos D. Malliaros:
Do We Really Need to Drop Items with Missing Modalities in Multimodal Recommendation? CoRR abs/2408.11767 (2024) - [i11]Daniele Malitesta, Giacomo Medda, Erasmo Purificato, Ludovico Boratto, Fragkiskos D. Malliaros, Mirko Marras, Ernesto William De Luca:
How Fair is Your Diffusion Recommender Model? CoRR abs/2409.04339 (2024) - [i10]Daniele Malitesta, Alberto Carlo Maria Mancino, Pasquale Minervini, Tommaso Di Noia:
Dot Product is All You Need: Bridging the Gap Between Item Recommendation and Link Prediction. CoRR abs/2409.07433 (2024) - [i9]Matteo Attimonelli, Danilo Danese, Angela Di Fazio, Daniele Malitesta, Claudio Pomo, Tommaso Di Noia:
Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation. CoRR abs/2409.15857 (2024) - 2023
- [c22]Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Vincenzo Paparella, Claudio Pomo:
Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering. ECIR (1) 2023: 33-48 - [c21]Dario Di Palma, Vito Walter Anelli, Daniele Malitesta, Vincenzo Paparella, Claudio Pomo, Yashar Deldjoo, Tommaso Di Noia:
Examining Fairness in Graph-Based Collaborative Filtering: A Consumer and Producer Perspective. IIR 2023: 79-84 - [c20]Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia:
Disentangling the Performance Puzzle of Multimodal-aware Recommender Systems. EvalRS@KDD 2023 - [c19]Daniele Malitesta, Giuseppe Gassi, Claudio Pomo, Tommaso Di Noia:
Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation. ACM Multimedia 2023: 9668-9671 - [c18]Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia:
On Popularity Bias of Multimodal-aware Recommender Systems: A Modalities-driven Analysis. MMIR@MM 2023: 59-68 - [c17]Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro Bellogín, Eugenio Di Sciascio, Tommaso Di Noia:
Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis. RecSys 2023: 350-361 - [c16]Alberto Carlo Maria Mancino, Antonio Ferrara, Salvatore Bufi, Daniele Malitesta, Tommaso Di Noia, Eugenio Di Sciascio:
KGTORe: Tailored Recommendations through Knowledge-aware GNN Models. RecSys 2023: 576-587 - [c15]Felice Antonio Merra, Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Alberto Carlo Maria Mancino:
Denoise to Protect: A Method to Robustify Visual Recommenders from Adversaries. SIGIR 2023: 1924-1928 - [c14]Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Tommaso Di Noia, Antonio Ferrara:
An Out-of-the-Box Application for Reproducible Graph Collaborative Filtering extending the Elliot Framework. UMAP (Adjunct Publication) 2023: 12-15 - [i8]Daniele Malitesta, Giuseppe Gassi, Claudio Pomo, Tommaso Di Noia:
Ducho: A Unified Framework for the Extraction of Multimodal Features in Recommendation. CoRR abs/2306.17125 (2023) - [i7]Vito Walter Anelli, Daniele Malitesta, Claudio Pomo, Alejandro Bellogín, Tommaso Di Noia, Eugenio Di Sciascio:
Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis. CoRR abs/2308.00404 (2023) - [i6]Daniele Malitesta, Claudio Pomo, Vito Walter Anelli, Alberto Carlo Maria Mancino, Eugenio Di Sciascio, Tommaso Di Noia:
A Topology-aware Analysis of Graph Collaborative Filtering. CoRR abs/2308.10778 (2023) - [i5]Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia:
On Popularity Bias of Multimodal-aware Recommender Systems: a Modalities-driven Analysis. CoRR abs/2308.12911 (2023) - [i4]Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Felice Antonio Merra, Tommaso Di Noia, Eugenio Di Sciascio:
Formalizing Multimedia Recommendation through Multimodal Deep Learning. CoRR abs/2309.05273 (2023) - [i3]Daniele Malitesta, Claudio Pomo, Tommaso Di Noia:
Graph Neural Networks for Recommendation: Reproducibility, Graph Topology, and Node Representation. CoRR abs/2310.11270 (2023) - 2022
- [c13]Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Daniele Malitesta, Claudio Pomo:
Reshaping Graph Recommendation with Edge Graph Collaborative Filtering and Customer Reviews. DL4SR@CIKM 2022 - [c12]Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
Leveraging Content-Style Item Representation for Visual Recommendation. ECIR (2) 2022: 84-92 - [c11]Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Daniele Malitesta, Claudio Pomo:
How Neighborhood Exploration influences Novelty and Diversity in Graph Collaborative Filtering. MORS@RecSys 2022 - [c10]Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco M. Donini, Eugenio Di Sciascio, Tommaso Di Noia:
The Challenging Reproducibility Task in Recommender Systems Research between Traditional and Deep Learning Models. SEBD 2022: 514-521 - 2021
- [c9]Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
A Study on the Relative Importance of Convolutional Neural Networks in Visually-Aware Recommender Systems. CVPR Workshops 2021: 3961-3967 - [c8]Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Eugenio Di Sciascio, Tommaso Di Noia:
How to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation. IIR 2021 - [c7]Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Daniele Malitesta, Felice Antonio Merra:
Adversarial Attacks against Visual Recommendation: an Investigation on the Influence of Items' Popularity. OHARS@RecSys 2021: 33-44 - [c6]Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Tommaso Di Noia:
V-Elliot: Design, Evaluate and Tune Visual Recommender Systems. RecSys 2021: 768-771 - [c5]Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images. SIGIR 2021: 1094-1103 - [c4]Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, Tommaso Di Noia:
Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. SIGIR 2021: 2405-2414 - [i2]Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco M. Donini, Tommaso Di Noia:
Elliot: a Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. CoRR abs/2103.02590 (2021) - 2020
- [c3]Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual Recommenders (short paper). DP@AI*IA 2020: 49-56 - [c2]Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems. DSN Workshops 2020: 1-8 - [c1]Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta:
Deep Learning-Based Adaptive Image Compression System for a Real-World Scenario. EAIS 2020: 1-8 - [i1]Vito Walter Anelli, Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra:
An Empirical Study of DNNs Robustification Inefficacy in Protecting Visual Recommenders. CoRR abs/2010.00984 (2020)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-23 20:36 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint