default search action
Xuezhi Wang 0002
Person information
- affiliation: Google Research, New York, NY, USA
- affiliation (former): Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA
Other persons with the same name
- Xuezhi Wang 0001 — RMIT University, School of Electrical and Computer Engineering, Melbourne, Australia (and 1 more)
- Xuezhi Wang 0003 — Liaoning University of Technology, School of Civil and Architectural Engineering, Jinzhou, China
- Xuezhi Wang 0004 — Chinese Academy of Sciences, Scientific Data Center, Computer Network Information Center, Beijing, China
- Xuezhi Wang 0005 — Jilin University, Computer Science and Technology Department, Changchun, China
- Xuezhi Wang 0006 — University of Southern California, Los Angeles, CA, USA
- Xuezhi Wang 0007 — Nanjing University of Science and Technology, China
- Xuezhi Wang 0008 — Meituan
- Xuezhi Wang 0009 — Wuhan Institute of Technology, School of Management, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei:
Scaling Instruction-Finetuned Language Models. J. Mach. Learn. Res. 25: 70:1-70:53 (2024) - [c43]Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry W. Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc V. Le, Thang Luong:
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation. ACL (Findings) 2024: 13697-13720 - [c42]Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, Denny Zhou:
Large Language Models as Tool Makers. ICLR 2024 - [c41]Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen:
Large Language Models as Optimizers. ICLR 2024 - [c40]Xinyun Chen, Ryan A. Chi, Xuezhi Wang, Denny Zhou:
Premise Order Matters in Reasoning with Large Language Models. ICML 2024 - [i42]Xinyun Chen, Ryan A. Chi, Xuezhi Wang, Denny Zhou:
Premise Order Matters in Reasoning with Large Language Models. CoRR abs/2402.08939 (2024) - [i41]Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, Denny Zhou:
Transformers Can Achieve Length Generalization But Not Robustly. CoRR abs/2402.09371 (2024) - [i40]Xuezhi Wang, Denny Zhou:
Chain-of-Thought Reasoning Without Prompting. CoRR abs/2402.10200 (2024) - [i39]Meng Song, Xuezhi Wang, Tanay Biradar, Yao Qin, Manmohan Chandraker:
A Minimalist Prompt for Zero-Shot Policy Learning. CoRR abs/2405.06063 (2024) - 2023
- [j5]Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel:
PaLM: Scaling Language Modeling with Pathways. J. Mach. Learn. Res. 24: 240:1-240:113 (2023) - [c39]Amanda Baughan, Xuezhi Wang, Ariel Liu, Allison Mercurio, Jilin Chen, Xiao Ma:
A Mixed-Methods Approach to Understanding User Trust after Voice Assistant Failures. CHI 2023: 7:1-7:16 - [c38]Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, Diyi Yang:
Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints. EACL (Findings) 2023: 1937-1963 - [c37]Ananth Balashankar, Xuezhi Wang, Yao Qin, Ben Packer, Nithum Thain, Ed H. Chi, Jilin Chen, Alex Beutel:
Improving Classifier Robustness through Active Generative Counterfactual Data Augmentation. EMNLP (Findings) 2023: 127-139 - [c36]Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, Jiawei Han:
Large Language Models Can Self-Improve. EMNLP 2023: 1051-1068 - [c35]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023 - [c34]Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, Jason Wei:
Language models are multilingual chain-of-thought reasoners. ICLR 2023 - [c33]Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, Denny Zhou:
Recitation-Augmented Language Models. ICLR 2023 - [c32]Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby, Donald Metzler:
UL2: Unifying Language Learning Paradigms. ICLR 2023 - [c31]Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, Joseph E. Gonzalez:
TEMPERA: Test-Time Prompt Editing via Reinforcement Learning. ICLR 2023 - [c30]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ICLR 2023 - [c29]Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, Yoon Kim:
Grammar Prompting for Domain-Specific Language Generation with Large Language Models. NeurIPS 2023 - [c28]Yao Qin, Xuezhi Wang, Balaji Lakshminarayanan, Ed H. Chi, Alex Beutel:
What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel. SaTML 2023: 365-376 - [i38]Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, Diyi Yang:
Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints. CoRR abs/2302.09185 (2023) - [i37]Yao Qin, Xuezhi Wang, Balaji Lakshminarayanan, Ed H. Chi, Alex Beutel:
What Are Effective Labels for Augmented Data? Improving Calibration and Robustness with AutoLabel. CoRR abs/2302.11188 (2023) - [i36]Amanda Baughan, Allison Mercurio, Ariel Liu, Xuezhi Wang, Jilin Chen, Xiao Ma:
A Mixed-Methods Approach to Understanding User Trust after Voice Assistant Failures. CoRR abs/2303.00164 (2023) - [i35]Jindong Gu, Ahmad Beirami, Xuezhi Wang, Alex Beutel, Philip H. S. Torr, Yao Qin:
Towards Robust Prompts on Vision-Language Models. CoRR abs/2304.08479 (2023) - [i34]Ananth Balashankar, Xuezhi Wang, Yao Qin, Ben Packer, Nithum Thain, Jilin Chen, Ed H. Chi, Alex Beutel:
Improving Classifier Robustness through Active Generation of Pairwise Counterfactuals. CoRR abs/2305.13535 (2023) - [i33]Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, Denny Zhou:
Large Language Models as Tool Makers. CoRR abs/2305.17126 (2023) - [i32]Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, Yoon Kim:
Grammar Prompting for Domain-Specific Language Generation with Large Language Models. CoRR abs/2305.19234 (2023) - [i31]Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen:
Large Language Models as Optimizers. CoRR abs/2309.03409 (2023) - [i30]Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry W. Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc V. Le, Thang Luong:
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation. CoRR abs/2310.03214 (2023) - [i29]Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, Xuezhi Wang, Denny Zhou:
Universal Self-Consistency for Large Language Model Generation. CoRR abs/2311.17311 (2023) - 2022
- [j4]Alexander D'Amour, Katherine A. Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yi-An Ma, Cory Y. McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley:
Underspecification Presents Challenges for Credibility in Modern Machine Learning. J. Mach. Learn. Res. 23: 226:1-226:61 (2022) - [c27]Yanzhe Zhang, Xuezhi Wang, Diyi Yang:
Continual Sequence Generation with Adaptive Compositional Modules. ACL (1) 2022: 3653-3667 - [c26]Jieyu Zhao, Xuezhi Wang, Yao Qin, Jilin Chen, Kai-Wei Chang:
Investigating Ensemble Methods for Model Robustness Improvement of Text Classifiers. EMNLP (Findings) 2022: 1634-1640 - [c25]Tianlu Wang, Rohit Sridhar, Diyi Yang, Xuezhi Wang:
Identifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models. NAACL-HLT (Findings) 2022: 1719-1729 - [c24]Xuezhi Wang, Haohan Wang, Diyi Yang:
Measure and Improve Robustness in NLP Models: A Survey. NAACL-HLT 2022: 4569-4586 - [c23]Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshminarayanan, Alex Beutel, Xuezhi Wang:
Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation. NeurIPS 2022 - [c22]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, Denny Zhou:
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS 2022 - [i28]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, Denny Zhou:
Chain of Thought Prompting Elicits Reasoning in Large Language Models. CoRR abs/2201.11903 (2022) - [i27]Yanzhe Zhang, Xuezhi Wang, Diyi Yang:
Continual Sequence Generation with Adaptive Compositional Modules. CoRR abs/2203.10652 (2022) - [i26]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. CoRR abs/2203.11171 (2022) - [i25]Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel:
PaLM: Scaling Language Modeling with Pathways. CoRR abs/2204.02311 (2022) - [i24]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. CoRR abs/2205.10625 (2022) - [i23]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Rationale-Augmented Ensembles in Language Models. CoRR abs/2207.00747 (2022) - [i22]Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, Denny Zhou:
Recitation-Augmented Language Models. CoRR abs/2210.01296 (2022) - [i21]Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, Jason Wei:
Language Models are Multilingual Chain-of-Thought Reasoners. CoRR abs/2210.03057 (2022) - [i20]Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei:
Scaling Instruction-Finetuned Language Models. CoRR abs/2210.11416 (2022) - [i19]Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, Jiawei Han:
Large Language Models Can Self-Improve. CoRR abs/2210.11610 (2022) - [i18]Jieyu Zhao, Xuezhi Wang, Yao Qin, Jilin Chen, Kai-Wei Chang:
Investigating Ensemble Methods for Model Robustness Improvement of Text Classifiers. CoRR abs/2210.16298 (2022) - [i17]Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, Joseph E. Gonzalez:
TEMPERA: Test-Time Prompting via Reinforcement Learning. CoRR abs/2211.11890 (2022) - 2021
- [c21]Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei, Xuezhi Wang, Ed H. Chi, Jilin Chen, Alex Beutel:
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective. AIES 2021: 873-883 - [c20]Ananth Balashankar, Xuezhi Wang, Ben Packer, Nithum Thain, Ed H. Chi, Alex Beutel:
Can We Improve Model Robustness through Secondary Attribute Counterfactuals? EMNLP (1) 2021: 4701-4712 - [c19]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. FAccT 2021: 206-214 - [c18]Yuyan Wang, Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, Ed H. Chi:
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning. KDD 2021: 1748-1757 - [c17]Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, Diyi Yang:
Continual Learning for Text Classification with Information Disentanglement Based Regularization. NAACL-HLT 2021: 2736-2746 - [c16]Yao Qin, Xuezhi Wang, Alex Beutel, Ed H. Chi:
Improving Calibration through the Relationship with Adversarial Robustness. NeurIPS 2021: 14358-14369 - [c15]Xuezhi Wang, Nithum Thain, Anu Sinha, Flavien Prost, Ed H. Chi, Jilin Chen, Alex Beutel:
Practical Compositional Fairness: Understanding Fairness in Multi-Component Recommender Systems. WSDM 2021: 436-444 - [i16]Sirui Yao, Yoni Halpern, Nithum Thain, Xuezhi Wang, Kang Lee, Flavien Prost, Ed H. Chi, Jilin Chen, Alex Beutel:
Measuring Recommender System Effects with Simulated Users. CoRR abs/2101.04526 (2021) - [i15]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. CoRR abs/2102.08410 (2021) - [i14]Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, Diyi Yang:
Continual Learning for Text Classification with Information Disentanglement Based Regularization. CoRR abs/2104.05489 (2021) - [i13]Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar, Trevor Potter, Li Wei, Xuezhi Wang, Ed H. Chi, Jilin Chen, Alex Beutel:
Measuring Model Fairness under Noisy Covariates: A Theoretical Perspective. CoRR abs/2105.09985 (2021) - [i12]Yuyan Wang, Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, Ed H. Chi:
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning. CoRR abs/2106.02705 (2021) - [i11]Tianlu Wang, Diyi Yang, Xuezhi Wang:
Identifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models. CoRR abs/2110.07736 (2021) - [i10]Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshminarayanan, Alex Beutel, Xuezhi Wang:
Understanding and Improving Robustness of Vision Transformers through Patch-based Negative Augmentation. CoRR abs/2110.07858 (2021) - [i9]Xuezhi Wang, Haohan Wang, Diyi Yang:
Measure and Improve Robustness in NLP Models: A Survey. CoRR abs/2112.08313 (2021) - 2020
- [c14]Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, Dipanjan Das:
ToTTo: A Controlled Table-To-Text Generation Dataset. EMNLP (1) 2020: 1173-1186 - [c13]Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, Ed H. Chi:
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation. EMNLP (1) 2020: 5141-5146 - [c12]Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed H. Chi:
Fairness without Demographics through Adversarially Reweighted Learning. NeurIPS 2020 - [i8]Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, Dipanjan Das:
ToTTo: A Controlled Table-To-Text Generation Dataset. CoRR abs/2004.14373 (2020) - [i7]Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed H. Chi:
Fairness without Demographics through Adversarially Reweighted Learning. CoRR abs/2006.13114 (2020) - [i6]Yao Qin, Xuezhi Wang, Alex Beutel, Ed H. Chi:
Improving Uncertainty Estimates through the Relationship with Adversarial Robustness. CoRR abs/2006.16375 (2020) - [i5]Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, Ed H. Chi:
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation. CoRR abs/2010.02338 (2020) - [i4]Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen, Slav Petrov:
Measuring and Reducing Gendered Correlations in Pre-trained Models. CoRR abs/2010.06032 (2020) - [i3]Alexander D'Amour, Katherine A. Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yi-An Ma, Cory Y. McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley:
Underspecification Presents Challenges for Credibility in Modern Machine Learning. CoRR abs/2011.03395 (2020)
2010 – 2019
- 2019
- [j3]Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel Liu, Niyati Mehta:
AggChecker: A Fact-Checking System for Text Summaries of Relational Data Sets. Proc. VLDB Endow. 12(12): 1938-1941 (2019) - [j2]Georgios Karagiannis, Immanuel Trummer, Saehan Jo, Shubham Khandelwal, Xuezhi Wang, Cong Yu:
Mining an "Anti-Knowledge Base" from Wikipedia Updates with Applications to Fact Checking and Beyond. Proc. VLDB Endow. 13(4): 561-573 (2019) - [c11]Silu Huang, Jialu Liu, Flip Korn, Xuezhi Wang, You Wu, Dale Markowitz, Cong Yu:
Contextual Fact Ranking and Its Applications in Table Synthesis and Compression. KDD 2019: 285-293 - [c10]Xuezhi Wang, Cong Yu:
Summarizing News Articles Using Question-and-Answer Pairs via Learning. ISWC (1) 2019: 698-715 - [c9]Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel Liu, Niyati Mehta:
Verifying Text Summaries of Relational Data Sets. SIGMOD Conference 2019: 299-316 - [c8]Flip Korn, Xuezhi Wang, You Wu, Cong Yu:
Automatically Generating Interesting Facts from Wikipedia Tables. SIGMOD Conference 2019: 349-361 - [i2]Candice Schumann, Xuezhi Wang, Alex Beutel, Jilin Chen, Hai Qian, Ed H. Chi:
Transfer of Machine Learning Fairness across Domains. CoRR abs/1906.09688 (2019) - [i1]Xuezhi Wang, Nithum Thain, Anu Sinha, Ed H. Chi, Jilin Chen, Alex Beutel:
Practical Compositional Fairness: Understanding Fairness in Multi-Task ML Systems. CoRR abs/1911.01916 (2019) - 2018
- [c7]Xuezhi Wang, Cong Yu, Simon Baumgartner, Flip Korn:
Relevant Document Discovery for Fact-Checking Articles. WWW (Companion Volume) 2018: 525-533 - 2016
- [c6]Xuezhi Wang, Junier B. Oliva, Jeff G. Schneider, Barnabás Póczos:
Nonparametric Risk and Stability Analysis for Multi-Task Learning Problems. IJCAI 2016: 2146-2152 - 2015
- [c5]Xuezhi Wang, Jeff G. Schneider:
Generalization Bounds for Transfer Learning under Model Shift. UAI 2015: 922-931 - 2014
- [j1]Rahul Gupta, Alon Y. Halevy, Xuezhi Wang, Steven Euijong Whang, Fei Wu:
Biperpedia: An Ontology for Search Applications. Proc. VLDB Endow. 7(7): 505-516 (2014) - [c4]Xuezhi Wang, Tzu-Kuo Huang, Jeff G. Schneider:
Active Transfer Learning under Model Shift. ICML 2014: 1305-1313 - [c3]Xuezhi Wang, Jeff G. Schneider:
Flexible Transfer Learning under Support and Model Shift. NIPS 2014: 1898-1906 - 2013
- [c2]Xuezhi Wang, Roman Garnett, Jeff G. Schneider:
Active search on graphs. KDD 2013: 731-738 - 2011
- [c1]Xuezhi Wang, Jie Tang, Hong Cheng, Philip S. Yu:
ADANA: Active Name Disambiguation. ICDM 2011: 794-803
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint