default search action
Jamie Morgenstern
Person information
- affiliation: University of Washington, Paul G. Allen School of Computer Science & Engineering, Seattle, WA, USA
- affiliation: Georgia Institute of Technology, School of Computer Science, Atlanta, GA, USA
- affiliation: University of Pennsylvania, Department of Computer and Information Science, Philadelphia, PA, USA
- affiliation (PhD 2015): Carnegie Mellon University, Pittsburgh, Computer Science Department, Pittsburgh, PA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c45]Sarah Dean, Mihaela Curmei, Lillian J. Ratliff, Jamie Morgenstern, Maryam Fazel:
Emergent specialization from participation dynamics and multi-learner retraining. AISTATS 2024: 343-351 - [c44]Rachel Hong, William Agnew, Tadayoshi Kohno, Jamie Morgenstern:
Who's in and who's out? A case study of multimodal CLIP-filtering in DataComp. EAAMO 2024: 4:1-4:17 - [i48]Angelina Wang, Jamie Morgenstern, John P. Dickerson:
Large language models cannot replace human participants because they cannot portray identity groups. CoRR abs/2402.01908 (2024) - [i47]Rachel Hong, William Agnew, Tadayoshi Kohno, Jamie Morgenstern:
Who's in and who's out? A case study of multimodal CLIP-filtering in DataComp. CoRR abs/2405.08209 (2024) - [i46]Martín Bertrán, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Reconstruction Attacks on Machine Unlearning: Simple Models are Vulnerable. CoRR abs/2405.20272 (2024) - [i45]John Dickerson, Seyed A. Esmaeili, Jamie Morgenstern, Claire Jie Zhang:
Fair Clustering: Critique, Caveats, and Future Directions. CoRR abs/2406.15960 (2024) - 2023
- [c43]Jamie Morgenstern:
Changing distributions and preferences in learning systems. AIES 2023: 2 - [c42]Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth:
Multicalibrated Regression for Downstream Fairness. AIES 2023: 259-286 - [c41]Rachel Hong, Tadayoshi Kohno, Jamie Morgenstern:
Evaluation of targeted dataset collection on racial equity in face recognition. AIES 2023: 531-541 - [c40]Pranjal Awasthi, Christopher Jung, Jamie Morgenstern:
Distributionally Robust Data Join. FORC 2023: 10:1-10:15 - [c39]Martín Bertrán, Shuai Tang, Aaron Roth, Michael Kearns, Jamie Morgenstern, Steven Wu:
Scalable Membership Inference Attacks via Quantile Regression. NeurIPS 2023 - [i44]John P. Dickerson, Seyed A. Esmaeili, Jamie Morgenstern, Claire Jie Zhang:
Doubly Constrained Fair Clustering. CoRR abs/2305.19475 (2023) - [i43]Martín Bertrán, Shuai Tang, Michael Kearns, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Scalable Membership Inference Attacks via Quantile Regression. CoRR abs/2307.03694 (2023) - [i42]Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin Jamieson:
Fair Active Learning in Low-Data Regimes. CoRR abs/2312.08559 (2023) - [i41]Avinandan Bose, Mihaela Curmei, Daniel L. Jiang, Jamie Morgenstern, Sarah Dean, Lillian J. Ratliff, Maryam Fazel:
Initializing Services in Interactive ML Systems for Diverse Users. CoRR abs/2312.11846 (2023) - 2022
- [c38]Jacob D. Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell, Jie Zhang:
Active Sampling for Min-Max Fairness. ICML 2022: 53-65 - [c37]Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian:
Individual Preference Stability for Clustering. ICML 2022: 197-246 - [c36]Sarah Dean, Jamie Morgenstern:
Preference Dynamics Under Personalized Recommendations. EC 2022: 795-816 - [i40]Pranjal Awasthi, Christopher Jung, Jamie Morgenstern:
Distributionally Robust Data Join. CoRR abs/2202.05797 (2022) - [i39]Bhuvesh Kumar, Jamie Morgenstern, Okke Schrijvers:
Optimal Spend Rate Estimation and Pacing for Ad Campaigns with Budgets. CoRR abs/2202.05881 (2022) - [i38]Sarah Dean, Jamie Morgenstern:
Preference Dynamics Under Personalized Recommendations. CoRR abs/2205.13026 (2022) - [i37]Sarah Dean, Mihaela Curmei, Lillian J. Ratliff, Jamie Morgenstern, Maryam Fazel:
Multi-learner risk reduction under endogenous participation dynamics. CoRR abs/2206.02667 (2022) - [i36]Romain Camilleri, Andrew Wagenmaker, Jamie Morgenstern, Lalit Jain, Kevin G. Jamieson:
Active Learning with Safety Constraints. CoRR abs/2206.11183 (2022) - [i35]Saba Ahmadi, Pranjal Awasthi, Samir Khuller, Matthäus Kleindessner, Jamie Morgenstern, Pattara Sukprasert, Ali Vakilian:
Individual Preference Stability for Clustering. CoRR abs/2207.03600 (2022) - [i34]Ira Globus-Harris, Varun Gupta, Christopher Jung, Michael Kearns, Jamie Morgenstern, Aaron Roth:
Multicalibrated Regression for Downstream Fairness. CoRR abs/2209.07312 (2022) - 2021
- [j4]Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M. Wallach, Hal Daumé III, Kate Crawford:
Datasheets for datasets. Commun. ACM 64(12): 86-92 (2021) - [c35]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. FAccT 2021: 206-214 - [i33]Pranjal Awasthi, Alex Beutel, Matthäus Kleindessner, Jamie Morgenstern, Xuezhi Wang:
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information. CoRR abs/2102.08410 (2021) - [i32]Siddarth Srinivasan, Jamie Morgenstern:
Auctions and Prediction Markets for Scientific Peer Review. CoRR abs/2109.00923 (2021) - 2020
- [c34]Margaret Mitchell, Dylan K. Baker, Nyalleng Moorosi, Emily Denton, Ben Hutchinson, Alex Hanna, Timnit Gebru, Jamie Morgenstern:
Diversity and Inclusion Metrics in Subset Selection. AIES 2020: 117-123 - [c33]Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern:
Equalized odds postprocessing under imperfect group information. AISTATS 2020: 1770-1780 - [c32]Aditya Saraf, Anna R. Karlin, Jamie Morgenstern:
Competition Alleviates Present Bias in Task Completion. WINE 2020: 266-279 - [i31]Margaret Mitchell, Dylan K. Baker, Nyalleng Moorosi, Emily Denton, Ben Hutchinson, Alex Hanna, Timnit Gebru, Jamie Morgenstern:
Diversity and Inclusion Metrics in Subset Selection. CoRR abs/2002.03256 (2020) - [i30]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
A Notion of Individual Fairness for Clustering. CoRR abs/2006.04960 (2020) - [i29]Jacob D. Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Jie Zhang:
Adaptive Sampling to Reduce Disparate Performance. CoRR abs/2006.06879 (2020) - [i28]Aditya Saraf, Anna R. Karlin, Jamie Morgenstern:
Competition Alleviates Present Bias in Task Completion. CoRR abs/2009.13741 (2020)
2010 – 2019
- 2019
- [c31]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
Fair k-Center Clustering for Data Summarization. ICML 2019: 3448-3457 - [c30]Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, Jamie Morgenstern:
Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019: 3458-3467 - [c29]Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, Duen Horng Chau:
FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning. VAST 2019: 46-56 - [c28]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. IJCAI 2019: 180-186 - [c27]Jacob D. Abernethy, Rachel Cummings, Bhuvesh Kumar, Sam Taggart, Jamie Morgenstern:
Learning Auctions with Robust Incentive Guarantees. NeurIPS 2019: 11587-11597 - [c26]Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie Morgenstern, Santosh S. Vempala:
Multi-Criteria Dimensionality Reduction with Applications to Fairness. NeurIPS 2019: 15135-15145 - [c25]Rachel Cummings, Varun Gupta, Dhamma Kimpara, Jamie Morgenstern:
On the Compatibility of Privacy and Fairness. UMAP (Adjunct Publication) 2019: 309-315 - [i27]Matthäus Kleindessner, Pranjal Awasthi, Jamie Morgenstern:
Fair k-Center Clustering for Data Summarization. CoRR abs/1901.08628 (2019) - [i26]Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, Jamie Morgenstern:
Guarantees for Spectral Clustering with Fairness Constraints. CoRR abs/1901.08668 (2019) - [i25]Benjamin Wilson, Judy Hoffman, Jamie Morgenstern:
Predictive Inequity in Object Detection. CoRR abs/1902.11097 (2019) - [i24]Jamie Morgenstern, Samira Samadi, Mohit Singh, Uthaipon Tao Tantipongpipat, Santosh S. Vempala:
Fair Dimensionality Reduction and Iterative Rounding for SDPs. CoRR abs/1902.11281 (2019) - [i23]Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, Duen Horng Chau:
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning. CoRR abs/1904.05419 (2019) - [i22]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. CoRR abs/1906.00241 (2019) - [i21]Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern:
Effectiveness of Equalized Odds for Fair Classification under Imperfect Group Information. CoRR abs/1906.03284 (2019) - 2018
- [j3]Sampath Kannan, Jamie Morgenstern, Ryan Rogers, Aaron Roth:
Private Pareto Optimal Exchange. ACM Trans. Economics and Comput. 6(3-4): 12:1-12:25 (2018) - [j2]Avrim Blum, Yishay Mansour, Jamie Morgenstern:
Learning What's Going on: Reconstructing Preferences and Priorities from Opaque Transactions. ACM Trans. Economics and Comput. 6(3-4): 13:1-13:20 (2018) - [c24]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Meritocratic Fairness for Infinite and Contextual Bandits. AIES 2018: 158-163 - [c23]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. NeurIPS 2018: 2231-2241 - [c22]Samira Samadi, Uthaipon Tao Tantipongpipat, Jamie Morgenstern, Mohit Singh, Santosh S. Vempala:
The Price of Fair PCA: One Extra dimension. NeurIPS 2018: 10999-11010 - [i20]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu:
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. CoRR abs/1801.03423 (2018) - [i19]Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna M. Wallach, Hal Daumé III, Kate Crawford:
Datasheets for Datasets. CoRR abs/1803.09010 (2018) - [i18]Samira Samadi, Uthaipon Tao Tantipongpipat, Jamie Morgenstern, Mohit Singh, Santosh S. Vempala:
The Price of Fair PCA: One Extra Dimension. CoRR abs/1811.00103 (2018) - 2017
- [c21]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Reinforcement Learning. ICML 2017: 1617-1626 - [c20]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. EC 2017: 369-386 - [i17]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. CoRR abs/1705.02321 (2017) - [i16]Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
A Convex Framework for Fair Regression. CoRR abs/1706.02409 (2017) - 2016
- [j1]Justin Hsu, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth, Rakesh Vohra:
Do prices coordinate markets? SIGecom Exch. 15(1): 84-88 (2016) - [c19]Jamie Morgenstern, Tim Roughgarden:
Learning Simple Auctions. COLT 2016: 1298-1318 - [c18]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. NIPS 2016: 325-333 - [c17]Michal Feldman, Ophir Friedler, Jamie Morgenstern, Guy Reiner:
Simple Mechanisms for Agents with Complements. EC 2016: 251-267 - [c16]Justin Hsu, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth, Rakesh Vohra:
Do prices coordinate markets? STOC 2016: 440-453 - [c15]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. WINE 2016: 429-443 - [i15]Michal Feldman, Ophir Friedler, Jamie Morgenstern, Guy Reiner:
Simple Auctions For Agents With Complements. CoRR abs/1603.07939 (2016) - [i14]Jamie Morgenstern, Tim Roughgarden:
Learning Simple Auctions. CoRR abs/1604.03171 (2016) - [i13]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. CoRR abs/1605.07139 (2016) - [i12]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Rawlsian Fairness for Machine Learning. CoRR abs/1610.09559 (2016) - [i11]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fair Learning in Markovian Environments. CoRR abs/1611.03071 (2016) - 2015
- [c14]Avrim Blum, Yishay Mansour, Jamie Morgenstern:
Learning Valuation Distributions from Partial Observation. AAAI 2015: 798-804 - [c13]David Kurokawa, Omer Lev, Jamie Morgenstern, Ariel D. Procaccia:
Impartial Peer Review. IJCAI 2015: 582-588 - [c12]Avrim Blum, Jamie Morgenstern, Ankit Sharma, Adam D. Smith:
Privacy-Preserving Public Information for Sequential Games. ITCS 2015: 173-180 - [c11]Jamie Morgenstern, Tim Roughgarden:
On the Pseudo-Dimension of Nearly Optimal Auctions. NIPS 2015: 136-144 - [c10]Sampath Kannan, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth:
Private Pareto Optimal Exchange. EC 2015: 261-278 - [c9]Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, S. Matthew Weinberg:
Simple Auctions with Simple Strategies. EC 2015: 305-322 - [c8]Avrim Blum, Yishay Mansour, Jamie Morgenstern:
Learning What's Going on: Reconstructing Preferences and Priorities from Opaque Transactions. EC 2015: 601-618 - [c7]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Approximately Stable, School Optimal, and Student-Truthful Many-to-One Matchings (via Differential Privacy). SODA 2015: 1890-1903 - [i10]Jamie Morgenstern, Tim Roughgarden:
The Pseudo-Dimension of Near-Optimal Auctions. CoRR abs/1506.03684 (2015) - [i9]Justin Hsu, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth, Rakesh Vohra:
Do Prices Coordinate Markets? CoRR abs/1511.00925 (2015) - [i8]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. CoRR abs/1511.05196 (2015) - 2014
- [i7]Avrim Blum, Jamie Morgenstern, Ankit Sharma, Adam D. Smith:
Privacy-Preserving Public Information for Sequential Games. CoRR abs/1402.4488 (2014) - [i6]Sampath Kannan, Jamie Morgenstern, Aaron Roth, Zhiwei Steven Wu:
Approximately Stable, School Optimal, and Student-Truthful Many-to-One Matchings (via Differential Privacy). CoRR abs/1407.2640 (2014) - [i5]Sampath Kannan, Jamie Morgenstern, Ryan M. Rogers, Aaron Roth:
Private Pareto Optimal Exchange. CoRR abs/1407.2641 (2014) - [i4]Avrim Blum, Yishay Mansour, Jamie Morgenstern:
Learning Valuation Distributions from Partial Observation. CoRR abs/1407.2855 (2014) - [i3]Avrim Blum, Yishay Mansour, Jamie Morgenstern:
Learning What's going on: reconstructing preferences and priorities from opaque transactions. CoRR abs/1408.6575 (2014) - 2013
- [c6]Simina Brânzei, Ioannis Caragiannis, Jamie Morgenstern, Ariel D. Procaccia:
How Bad Is Selfish Voting? AAAI 2013: 138-144 - [c5]William Sean Kennedy, Jamie Morgenstern, Gordon T. Wilfong, Lisa Zhang:
Hierarchical community decomposition via oblivious routing techniques. COSN 2013: 107-118 - [i2]Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis:
Draft Auctions. CoRR abs/1311.2820 (2013) - 2012
- [c4]Steven J. Brams, Michal Feldman, John K. Lai, Jamie Morgenstern, Ariel D. Procaccia:
On Maxsum Fair Cake Divisions. AAAI 2012: 1285-1291 - [c3]Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, Or Sheffet:
Additive Approximation for Near-Perfect Phylogeny Construction. APPROX-RANDOM 2012: 25-36 - [i1]Pranjal Awasthi, Avrim Blum, Jamie Morgenstern, Or Sheffet:
Additive Approximation for Near-Perfect Phylogeny Construction. CoRR abs/1206.3334 (2012) - 2011
- [c2]Jamie Morgenstern, Deepak Garg, Frank Pfenning:
A Proof-Carrying File System with Revocable and Use-Once Certificates. STM 2011: 40-55 - 2010
- [c1]Jamie Morgenstern, Daniel R. Licata:
Security-typed programming within dependently typed programming. ICFP 2010: 169-180
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint