default search action
16th CIBB 2019: Bergamo, Italy
- Paolo Cazzaniga, Daniela Besozzi, Ivan Merelli, Luca Manzoni:
Computational Intelligence Methods for Bioinformatics and Biostatistics - 16th International Meeting, CIBB 2019, Bergamo, Italy, September 4-6, 2019, Revised Selected Papers. Lecture Notes in Computer Science 12313, Springer 2020, ISBN 978-3-030-63060-7
Computational Intelligence Methods for Bioinformatics and Biostatistics
- Guillaume Zamora, Caro Fuchs, Aurélie Degeneffe, Pieter Leonard Kubben, Uzay Kaymak:
A Smartphone-Based Clinical Decision Support System for Tremor Assessment. 3-12 - Lucrezia Patruno, Edoardo Galimberti, Daniele Ramazzotti, Giulio Caravagna, Luca De Sano, Marco Antoniotti, Alex Graudenzi:
cyTRON and cyTRON/JS: Two Cytoscape-Based Applications for the Inference of Cancer Evolution Models. 13-18 - Ryan Mitchell, David E. Cairns, Dalila Hamami, Kevin G Pollock, Carron Shankland:
Effective Use of Evolutionary Computation to Parameterise an Epidemiological Model. 19-32 - Eleonora Cappelli, Emanuel Weitschek, Fabio Cumbo:
Extending Knowledge on Genomic Data and Metadata of Cancer by Exploiting Taxonomy-Based Relaxed Queries on Domain-Specific Ontologies. 33-43 - Changhee Han, Leonardo Rundo, Kohei Murao, Zoltán Ádám Milacski, Kazuki Umemoto, Evis Sala, Hideki Nakayama, Shin'ichi Satoh:
GAN-Based Multiple Adjacent Brain MRI Slice Reconstruction for Unsupervised Alzheimer's Disease Diagnosis. 44-54 - Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Improving the Fusion of Outbreak Detection Methods with Supervised Learning. 55-66 - The Tien Mai, Leiv Rønneberg, Zhi Zhao, Manuela Zucknick, Jukka Corander:
Learning Cancer Drug Sensitivities in Large-Scale Screens from Multi-omics Data with Local Low-Rank Structure. 67-79 - Guillaume Fertin, Matthieu David, Hélène Rogniaux, Dominique Tessier:
Mass Spectra Interpretation and the Interest of SpecFit for Identifying Uncommon Modifications. 80-89 - Manuel Anacleto, Susana Vinga, Alexandra M. Carvalho:
MSAX: Multivariate Symbolic Aggregate Approximation for Time Series Classification. 90-97 - Daniele D'Agostino, Pietro Liò, Marco Aldinucci, Ivan Merelli:
NeoHiC: A Web Application for the Analysis of Hi-C Data. 98-107 - André Veríssimo, Marta B. Lopes, Eunice Carrasquinha, Susana Vinga:
Random Sample Consensus for the Robust Identification of Outliers in Cancer Data. 108-118 - Alberto Dennunzio, Enrico Formenti, Luciano Margara, Valentin Montmirail, Sara Riva:
Solving Equations on Discrete Dynamical Systems. 119-132 - Meysam Roodi, Andreas Moshovos:
SW+: On Accelerating Smith-Waterman Execution of GATK HaplotypeCaller. 133-141
Algebraic and Computational Methods for the Study of RNA Behaviour
- Stefano Maestri, Emanuela Merelli:
Algebraic Characterisation of Non-coding RNA. 145-158 - Maria Waldl, Sebastian Will, Michael T. Wolfinger, Ivo L. Hofacker, Peter F. Stadler:
Bi-alignments as Models of Incongruent Evolution of RNA Sequence and Secondary Structure. 159-170 - Michela Quadrini, Emanuela Merelli, Riccardo Piergallini:
Label Core for Understanding RNA Structure. 171-179 - Yuliya Susanina, Anna Yaveyn, Semyon V. Grigorev:
Modification of Valiant's Parsing Algorithm for the String-Searching Problem. 180-192 - Polina Lunina, Semyon V. Grigorev:
On Secondary Structure Analysis by Using Formal Grammars and Artificial Neural Networks. 193-203
Intelligence Methods for Molecular Characterization and Dynamics in Translational Medicine
- Davide Maspero, Marzia Di Filippo, Fabrizio Angaroni, Dario Pescini, Giancarlo Mauri, Marco Vanoni, Alex Graudenzi, Chiara Damiani:
Integration of Single-Cell RNA-Sequencing Data into Flux Balance Cellular Automata. 207-215
Machine Learning in Healthcare Informatics and Medical Biology
- Alberto Pinheira, Rodrigo da Silva Dias, Camila Nascimento, Inês Dutra:
Characterizing Bipolar Disorder-Associated Single Nucleotide Polymorphisms in a Large British Cohort Using Association Rules. 219-231 - Silvia Cascianelli, Francisco Cristovao, Arif Canakoglu, Mark J. Carman, Luca Nanni, Pietro Pinoli, Marco Masseroli:
Evaluating Deep Semi-supervised Learning for Whole-Transcriptome Breast Cancer Subtyping. 232-244 - Giuseppe Agapito, Mario Cannataro, Pietro H. Guzzi, Marianna Milano:
Learning Weighted Association Rules in Human Phenotype Ontology. 245-256 - Gaia Ceddia, Sara Pidò, Marco Masseroli:
Network Modeling and Analysis of Normal and Cancer Gene Expression Data. 257-270 - Eunice Carrasquinha, João Santinha, Alexander Mongolin, Maria Lisitskiya, Joana Ribeiro, Fátima Cardoso, Celso Matos, Leonardo Vanneschi, Nikolaos Papanikolaou:
Regularization Techniques in Radiomics: A Case Study on the Prediction of pCR in Breast Tumours and the Axilla. 271-281
Modeling and Simulation Methods for Computational Biology and Systems Medicine
- Marzio Pennisi, Giulia Russo, Giuseppe Sgroi, Giuseppe Alessandro Parasiliti Palumbo, Francesco Pappalardo:
In Silico Evaluation of Daclizumab and Vitamin D Effects in Multiple Sclerosis Using Agent Based Models. 285-298 - Simone Pernice, Marco Beccuti, Greta Romano, Marzio Pennisi, Alessandro Maglione, Santina Cutrupi, Francesco Pappalardo, Lorenzo Capra, Giuliana Franceschinis, Massimiliano De Pierro, Gianfranco Balbo, Francesca Cordero, Raffaele A. Calogero:
Multiple Sclerosis Disease: A Computational Approach for Investigating Its Drug Interactions. 299-308 - Paola Lecca, Angela Re:
Observability of Bacterial Growth Models in Bubble Column Bioreactors. 309-322 - Nicola Bombieri, Antonio Mastrandrea, Silvia Scaffeo, Simone Caligola, Franco Fummi, Carlo Laudanna, Gabriela Constantin, Rosalba Giugno:
On the Simulation and Automatic Parametrization of Metabolic Networks Through Electronic Design Automation. 323-334 - Isis Bonet, Alejandro Peña, Christian Lochmuller, Alejandro Patino, Mario Gongora:
Deep Clustering for Metagenomics. 335-347
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.