default search action
Eneldo Loza Mencía
Person information
- affiliation: TU Darmstadt, Department of Computer Science, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j10]Eneldo Loza Mencía, Moritz Kulessa, Simon Bohlender, Johannes Fürnkranz:
Tree-based dynamic classifier chains. Mach. Learn. 112(11): 4129-4165 (2023) - [j9]Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa López, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Vakaj, Gerard de Melo:
Knowledge Graph Embeddings: Open Challenges and Opportunities. TGDK 1(1): 4:1-4:32 (2023) - 2022
- [j8]Antonella Plaia, Simona Buscemi, Johannes Fürnkranz, Eneldo Loza Mencía:
Comparing Boosting and Bagging for Decision Trees of Rankings. J. Classif. 39(1): 78-99 (2022) - [j7]Eyke Hüllermeier, Marcel Wever, Eneldo Loza Mencía, Johannes Fürnkranz, Michael Rapp:
A flexible class of dependence-aware multi-label loss functions. Mach. Learn. 111(2): 713-737 (2022) - [i18]Florian Busch, Moritz Kulessa, Eneldo Loza Mencía, Hendrik Blockeel:
Combining Predictions under Uncertainty: The Case of Random Decision Trees. CoRR abs/2208.07403 (2022) - 2021
- [j6]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
A Unifying Framework and Comparative Evaluation of Statistical and Machine Learning Approaches to Non-Specific Syndromic Surveillance. Comput. 10(3): 32 (2021) - [j5]Michael Rapp, Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Correlation-Based Discovery of Disease Patterns for Syndromic Surveillance. Frontiers Big Data 4: 784159 (2021) - [c46]Moritz Kulessa, Bennet Wittelsbach, Eneldo Loza Mencía, Johannes Fürnkranz:
Sum-Product Networks for Early Outbreak Detection of Emerging Diseases. AIME 2021: 61-71 - [c45]Florian Busch, Moritz Kulessa, Eneldo Loza Mencía, Hendrik Blockeel:
Combining Predictions Under Uncertainty: The Case of Random Decision Trees. DS 2021: 78-93 - [c44]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Revisiting Non-specific Syndromic Surveillance. IDA 2021: 128-140 - [c43]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier:
Gradient-Based Label Binning in Multi-label Classification. ECML/PKDD (3) 2021: 462-477 - [i17]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Revisiting Non-Specific Syndromic Surveillance. CoRR abs/2101.12246 (2021) - [i16]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier:
Gradient-based Label Binning in Multi-label Classification. CoRR abs/2106.11690 (2021) - [i15]Michael Rapp, Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Correlation-based Discovery of Disease Patterns for Syndromic Surveillance. CoRR abs/2110.09208 (2021) - [i14]Eneldo Loza Mencía, Moritz Kulessa, Simon Bohlender, Johannes Fürnkranz:
Tree-Based Dynamic Classifier Chains. CoRR abs/2112.06672 (2021) - 2020
- [c42]Simon Bohlender, Eneldo Loza Mencía, Moritz Kulessa:
Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains. DS 2020: 471-485 - [c41]Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On Aggregation in Ensembles of Multilabel Classifiers. DS 2020: 533-547 - [c40]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía:
Conformal Rule-Based Multi-label Classification. KI 2020: 290-296 - [c39]Margot Mieskes, Eneldo Loza Mencía, Tim Kronsbein:
A Data Set for the Analysis of Text Quality Dimensions in Summarization Evaluation. LREC 2020: 6690-6699 - [c38]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen, Eyke Hüllermeier:
Learning Gradient Boosted Multi-label Classification Rules. ECML/PKDD (3) 2020: 124-140 - [c37]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía, Vu-Linh Nguyen, Michael Rapp:
Rule-Based Multi-label Classification: Challenges and Opportunities. RuleML+RR 2020: 3-19 - [i13]Simon Bohlender, Eneldo Loza Mencía, Moritz Kulessa:
Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains. CoRR abs/2006.08094 (2020) - [i12]Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On Aggregation in Ensembles of Multilabel Classifiers. CoRR abs/2006.11916 (2020) - [i11]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen, Eyke Hüllermeier:
Learning Gradient Boosted Multi-label Classification Rules. CoRR abs/2006.13346 (2020) - [i10]Eyke Hüllermeier, Johannes Fürnkranz, Eneldo Loza Mencía:
Conformal Rule-Based Multi-label Classification. CoRR abs/2007.08145 (2020) - [i9]Eyke Hüllermeier, Marcel Wever, Eneldo Loza Mencía, Johannes Fürnkranz, Michael Rapp:
A Flexible Class of Dependence-aware Multi-Label Loss Functions. CoRR abs/2011.00792 (2020) - [i8]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Michael Rapp:
Learning Structured Declarative Rule Sets - A Challenge for Deep Discrete Learning. CoRR abs/2012.04377 (2020)
2010 – 2019
- 2019
- [c36]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Improving the Fusion of Outbreak Detection Methods with Supervised Learning. CIBB 2019: 55-66 - [c35]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On the Trade-Off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. DS 2019: 96-111 - [c34]Yannik Klein, Michael Rapp, Eneldo Loza Mencía:
Efficient Discovery of Expressive Multi-label Rules Using Relaxed Pruning. DS 2019: 367-382 - [c33]Jinseok Nam, Young-Bum Kim, Eneldo Loza Mencía, Sunghyun Park, Ruhi Sarikaya, Johannes Fürnkranz:
Learning Context-dependent Label Permutations for Multi-label Classification. ICML 2019: 4733-4742 - [i7]Moritz Kulessa, Eneldo Loza Mencía, Johannes Fürnkranz:
Improving Outbreak Detection with Stacking of Statistical Surveillance Methods. CoRR abs/1907.07464 (2019) - [i6]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
On the Trade-off Between Consistency and Coverage in Multi-label Rule Learning Heuristics. CoRR abs/1908.03032 (2019) - [i5]Yannik Klein, Michael Rapp, Eneldo Loza Mencía:
Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning. CoRR abs/1908.06874 (2019) - [i4]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Simplifying Random Forests: On the Trade-off between Interpretability and Accuracy. CoRR abs/1911.04393 (2019) - 2018
- [c32]Moritz Kulessa, Eneldo Loza Mencía:
Dynamic Classifier Chain with Random Decision Trees. DS 2018: 33-50 - [c31]Patryk Hopner, Eneldo Loza Mencía:
Analysis and Optimization of Deep Counterfactual Value Networks. KI 2018: 305-312 - [c30]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Which Scores to Predict in Sentence Regression for Text Summarization? NAACL-HLT 2018: 1782-1791 - [c29]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. PAKDD (1) 2018: 29-42 - [c28]Markus Zopf, Teresa Botschen, Tobias Falke, Benjamin Heinzerling, Ana Marasovic, Todor Mihaylov, Avinesh P. V. S., Eneldo Loza Mencía, Johannes Fürnkranz, Anette Frank:
What's Important in a Text? An Extensive Evaluation of Linguistic Annotations for Summarization. SNAMS 2018: 272-277 - [i3]Eneldo Loza Mencía, Patryk Hopner:
Analysis and Optimization of Deep CounterfactualValue Networks. CoRR abs/1807.00900 (2018) - [i2]Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier, Michael Rapp:
Learning Interpretable Rules for Multi-label Classification. CoRR abs/1812.00050 (2018) - [i1]Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz:
Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules. CoRR abs/1812.06833 (2018) - 2017
- [c27]Camila González, Eneldo Loza Mencía, Johannes Fürnkranz:
Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction. DS 2017: 127-143 - [c26]Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, Johannes Fürnkranz:
Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification. NIPS 2017: 5413-5423 - [c25]Mohammed Arif Khan, Asif Ekbal, Eneldo Loza Mencía, Johannes Fürnkranz:
Multi-objective Optimisation-Based Feature Selection for Multi-label Classification. NLDB 2017: 38-41 - 2016
- [j4]Axel Schulz, Eneldo Loza Mencía, Benedikt Schmidt:
A rapid-prototyping framework for extracting small-scale incident-related information in microblogs: Application of multi-label classification on tweets. Inf. Syst. 57: 88-110 (2016) - [j3]Eneldo Loza Mencía, Frederik Janssen:
Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1): 77-126 (2016) - [c24]Jinseok Nam, Eneldo Loza Mencía, Johannes Fürnkranz:
All-in Text: Learning Document, Label, and Word Representations Jointly. AAAI 2016: 1948-1954 - [c23]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Sequential Clustering and Contextual Importance Measures for Incremental Update Summarization. COLING 2016: 1071-1082 - [c22]Markus Zopf, Eneldo Loza Mencía, Johannes Fürnkranz:
Beyond Centrality and Structural Features: Learning Information Importance for Text Summarization. CoNLL 2016: 84-94 - [c21]Jan Ruben Zilke, Eneldo Loza Mencía, Frederik Janssen:
DeepRED - Rule Extraction from Deep Neural Networks. DS 2016: 457-473 - [c20]Prateek Veeranna Sappadla, Jinseok Nam, Eneldo Loza Mencía, Johannes Fürnkranz:
Using semantic similarity for multi-label zero-shot classification of text documents. ESANN 2016 - [c19]Eneldo Loza Mencía, Gerard de Melo, Jinseok Nam:
Medical Concept Embeddings via Labeled Background Corpora. LREC 2016 - 2015
- [c18]Mohammed Arif Khan, Asif Ekbal, Eneldo Loza Mencía:
Simultaneous Feature Selection and Parameter Optimization Using Multi-objective Optimization for Sentiment Analysis. ICON 2015: 285-294 - [c17]Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, Johannes Fürnkranz:
Predicting Unseen Labels Using Label Hierarchies in Large-Scale Multi-label Learning. ECML/PKDD (1) 2015: 102-118 - 2014
- [c16]Eneldo Loza Mencía, Frederik Janssen:
Stacking Label Features for Learning Multilabel Rules. Discovery Science 2014: 192-203 - [c15]Petar Ristoski, Eneldo Loza Mencía, Heiko Paulheim:
A Hybrid Multi-strategy Recommender System Using Linked Open Data. SemWebEval@ESWC 2014: 150-156 - [c14]Christian Brinker, Eneldo Loza Mencía, Johannes Fürnkranz:
Graded Multilabel Classification by Pairwise Comparisons. ICDM 2014: 731-736 - [c13]Axel Schulz, Eneldo Loza Mencía, Thanh-Tung Dang, Benedikt Schmidt:
Evaluating Multi-label Classification of Incident-related Tweet. #MSM 2014: 26-33 - [c12]Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna Gurevych, Johannes Fürnkranz:
Large-Scale Multi-label Text Classification - Revisiting Neural Networks. ECML/PKDD (2) 2014: 437-452 - 2013
- [b1]Eneldo Loza Mencía:
Efficient pairwise multilabel classification. Darmstadt University of Technology, Germany, 2013, pp. 1-247 - [c11]Eneldo Loza Mencía, Simon Holthausen, Axel Schulz, Frederik Janssen:
Using Data Mining on Linked Open Data for Analyzing E-Procurement Information - A Machine Learning approach to the Linked Data Mining Challenge 2013. DMoLD 2013 - [c10]Eneldo Loza Mencía, Frederik Janssen:
Towards Multilabel Rule Learning. LWA 2013: 144-147 - 2012
- [c9]Wouter Duivesteijn, Eneldo Loza Mencía, Johannes Fürnkranz, Arno J. Knobbe:
Multi-label LeGo - Enhancing Multi-label Classifiers with Local Patterns. IDA 2012: 114-125 - 2010
- [j2]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7-9): 1164-1176 (2010) - [c8]Eneldo Loza Mencía, Johannes Fürnkranz:
Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. Semantic Processing of Legal Texts 2010: 192-215 - [c7]Eneldo Loza Mencía:
An Evaluation of Multilabel Classification for the Automatic Annotation of Texts. LWA 2010: 121-123
2000 – 2009
- 2009
- [c6]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient voting prediction for pairwise multilabel classification. ESANN 2009 - [c5]Eneldo Loza Mencía:
Segmentation of legal documents. ICAIL 2009: 88-97 - [c4]Eneldo Loza Mencía, Sang-Hyeun Park, Johannes Fürnkranz:
Efficient Voting Prediction for Pairwise Multilabel Classification. LWA 2009: KDML:72-75 - 2008
- [j1]Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, Klaus Brinker:
Multilabel classification via calibrated label ranking. Mach. Learn. 73(2): 133-153 (2008) - [c3]Eneldo Loza Mencía, Johannes Fürnkranz:
Pairwise learning of multilabel classifications with perceptrons. IJCNN 2008: 2899-2906 - [c2]Eneldo Loza Mencía, Johannes Fürnkranz:
Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain. ECML/PKDD (2) 2008: 50-65 - 2007
- [c1]Eneldo Loza Mencía, Johannes Fürnkranz:
An Evaluation of Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain. LWA 2007: 126-132
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint