default search action
Seyed Hamed Hassani
Person information
- affiliation: University of Pennsylvania, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j32]Mark Beliaev, Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Efficient and Robust Classification for Sparse Attacks. IEEE J. Sel. Areas Inf. Theory 5: 261-272 (2024) - [j31]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Binary Classification Under ℓ0 Attacks for General Noise Distribution. IEEE Trans. Inf. Theory 70(2): 1284-1299 (2024) - [j30]Han Wang, Aritra Mitra, Hamed Hassani, George J. Pappas, James Anderson:
Federated TD Learning with Linear Function Approximation under Environmental Heterogeneity. Trans. Mach. Learn. Res. 2024 (2024) - [j29]Aritra Mitra, George J. Pappas, Hamed Hassani:
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning. Trans. Mach. Learn. Res. 2024 (2024) - [c106]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. AISTATS 2024: 2746-2754 - [c105]Arman Adibi, Aritra Mitra, Hamed Hassani:
Min-Max Optimization Under Delays. ACC 2024: 80-85 - [c104]Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani, Edgar Dobriban:
Uncertainty in Language Models: Assessment through Rank-Calibration. EMNLP 2024: 284-312 - [c103]Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, Volkan Cevher:
Adversarial Training Should Be Cast as a Non-Zero-Sum Game. ICLR 2024 - [c102]Liam Collins, Hamed Hassani, Mahdi Soltanolkotabi, Aryan Mokhtari, Sanjay Shakkottai:
Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks. ICML 2024 - [c101]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Conformal Prediction with Learned Features. ICML 2024 - [c100]Kevin Kögler, Aleksandr Shevchenko, Hamed Hassani, Marco Mondelli:
Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth. ICML 2024 - [c99]Behrad Moniri, Donghwan Lee, Hamed Hassani, Edgar Dobriban:
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks. ICML 2024 - [i132]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Generalization Properties of Adversarial Training for 𝓁0-Bounded Adversarial Attacks. CoRR abs/2402.03576 (2024) - [i131]Kevin Kögler, Alexander Shevchenko, Hamed Hassani, Marco Mondelli:
Compression of Structured Data with Autoencoders: Provable Benefit of Nonlinearities and Depth. CoRR abs/2402.05013 (2024) - [i130]Arman Adibi, Nicolò Dal Fabbro, Luca Schenato, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra:
Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian Sampling. CoRR abs/2402.11800 (2024) - [i129]Jiabao Ji, Bairu Hou, Alexander Robey, George J. Pappas, Hamed Hassani, Yang Zhang, Eric Wong, Shiyu Chang:
Defending Large Language Models against Jailbreak Attacks via Semantic Smoothing. CoRR abs/2402.16192 (2024) - [i128]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Approaching Rate-Distortion Limits in Neural Compression with Lattice Transform Coding. CoRR abs/2403.07320 (2024) - [i127]Yutong He, Alexander Robey, Naoki Murata, Yiding Jiang, Joshua Williams, George J. Pappas, Hamed Hassani, Yuki Mitsufuji, Ruslan Salakhutdinov, J. Zico Kolter:
Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation. CoRR abs/2403.19103 (2024) - [i126]Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramèr, Hamed Hassani, Eric Wong:
JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models. CoRR abs/2404.01318 (2024) - [i125]Xinmeng Huang, Shuo Li, Mengxin Yu, Matteo Sesia, Hamed Hassani, Insup Lee, Osbert Bastani, Edgar Dobriban:
Uncertainty in Language Models: Assessment through Rank-Calibration. CoRR abs/2404.03163 (2024) - [i124]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Conformal Prediction with Learned Features. CoRR abs/2404.17487 (2024) - [i123]Behrad Moniri, Hamed Hassani:
Signal-Plus-Noise Decomposition of Nonlinear Spiked Random Matrix Models. CoRR abs/2405.18274 (2024) - [i122]Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, Dongsheng Ding:
One-Shot Safety Alignment for Large Language Models via Optimal Dualization. CoRR abs/2405.19544 (2024) - [i121]Mahdi Sabbaghi, George J. Pappas, Hamed Hassani, Surbhi Goel:
Explicitly Encoding Structural Symmetry is Key to Length Generalization in Arithmetic Tasks. CoRR abs/2406.01895 (2024) - [i120]Patrick Chao, Edgar Dobriban, Hamed Hassani:
Watermarking Language Models with Error Correcting Codes. CoRR abs/2406.10281 (2024) - [i119]Behrad Moniri, Hamed Hassani, Edgar Dobriban:
Evaluating the Performance of Large Language Models via Debates. CoRR abs/2406.11044 (2024) - [i118]Shayan Kiyani, George J. Pappas, Hamed Hassani:
Length Optimization in Conformal Prediction. CoRR abs/2406.18814 (2024) - [i117]Hongyan Chang, Hamed Hassani, Reza Shokri:
Watermark Smoothing Attacks against Language Models. CoRR abs/2407.14206 (2024) - [i116]Alexander Robey, Zachary Ravichandran, Vijay Kumar, Hamed Hassani, George J. Pappas:
Jailbreaking LLM-Controlled Robots. CoRR abs/2410.13691 (2024) - 2023
- [j28]Donghwan Lee, Xinmeng Huang, Hamed Hassani, Edgar Dobriban:
T-Cal: An Optimal Test for the Calibration of Predictive Models. J. Mach. Learn. Res. 24: 335:1-335:72 (2023) - [j27]Mohammad Fereydounian, Hamed Hassani, Mohammad Vahid Jamali, Hessam Mahdavifar:
Channel Coding at Low Capacity. IEEE J. Sel. Areas Inf. Theory 4: 351-362 (2023) - [j26]Mohammad Fereydounian, Aryan Mokhtari, Ramtin Pedarsani, Hamed Hassani:
Provably Private Distributed Averaging Consensus: An Information-Theoretic Approach. IEEE Trans. Inf. Theory 69(11): 7317-7335 (2023) - [j25]Edgar Dobriban, Hamed Hassani, David Hong, Alexander Robey:
Provable Tradeoffs in Adversarially Robust Classification. IEEE Trans. Inf. Theory 69(12): 7793-7822 (2023) - [j24]Isidoros Tziotis, Zebang Shen, Ramtin Pedarsani, Hamed Hassani, Aryan Mokhtari:
Straggler-Resilient Personalized Federated Learning. Trans. Mach. Learn. Res. 2023 (2023) - [c98]Thomas T. C. K. Zhang, Bruce D. Lee, Hamed Hassani, Nikolai Matni:
Adversarial Tradeoffs in Robust State Estimation. ACC 2023: 4083-4089 - [c97]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
On a Relation Between the Rate-Distortion Function and Optimal Transport. Tiny Papers @ ICLR 2023 - [c96]Zebang Shen, Jiayuan Ye, Anmin Kang, Hamed Hassani, Reza Shokri:
Share Your Representation Only: Guaranteed Improvement of the Privacy-Utility Tradeoff in Federated Learning. ICLR 2023 - [c95]Donghwan Lee, Behrad Moniri, Xinmeng Huang, Edgar Dobriban, Hamed Hassani:
Demystifying Disagreement-on-the-Line in High Dimensions. ICML 2023: 19053-19093 - [c94]Aleksandr Shevchenko, Kevin Kögler, Hamed Hassani, Marco Mondelli:
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods. ICML 2023: 31151-31209 - [c93]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Federated Neural Compression Under Heterogeneous Data. ISIT 2023: 525-530 - [c92]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Generalization Properties of Adversarial Training for -ℓ0 Bounded Adversarial Attacks. ITW 2023: 113-118 - [c91]Aritra Mitra, Hamed Hassani, George J. Pappas:
Linear Stochastic Bandits over a Bit-Constrained Channel. L4DC 2023: 1387-1399 - [c90]Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pappas, Hamed Hassani, Corina S. Pasareanu, Clark W. Barrett:
Toward Certified Robustness Against Real-World Distribution Shifts. SaTML 2023: 537-553 - [i115]Aritra Mitra, George J. Pappas, Hamed Hassani:
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning. CoRR abs/2301.00944 (2023) - [i114]Donghwan Lee, Behrad Moniri, Xinmeng Huang, Edgar Dobriban, Hamed Hassani:
Demystifying Disagreement-on-the-Line in High Dimensions. CoRR abs/2301.13371 (2023) - [i113]Han Wang, Aritra Mitra, Hamed Hassani, George J. Pappas, James Anderson:
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity. CoRR abs/2302.02212 (2023) - [i112]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Control and Estimation. CoRR abs/2305.16415 (2023) - [i111]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Federated Neural Compression Under Heterogeneous Data. CoRR abs/2305.16416 (2023) - [i110]Xinmeng Huang, Kan Xu, Donghwan Lee, Hamed Hassani, Hamsa Bastani, Edgar Dobriban:
Optimal Heterogeneous Collaborative Linear Regression and Contextual Bandits. CoRR abs/2306.06291 (2023) - [i109]Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, Volkan Cevher:
Adversarial Training Should Be Cast as a Non-Zero-Sum Game. CoRR abs/2306.11035 (2023) - [i108]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
On a Relation Between the Rate-Distortion Function and Optimal Transport. CoRR abs/2307.00246 (2023) - [i107]Eric Lei, Yigit Berkay Uslu, Hamed Hassani, Shirin Saeedi Bidokhti:
Text + Sketch: Image Compression at Ultra Low Rates. CoRR abs/2307.01944 (2023) - [i106]Arman Adibi, Aritra Mitra, Hamed Hassani:
Min-Max Optimization under Delays. CoRR abs/2307.06886 (2023) - [i105]Liam Collins, Hamed Hassani, Mahdi Soltanolkotabi, Aryan Mokhtari, Sanjay Shakkottai:
Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks. CoRR abs/2307.06887 (2023) - [i104]Zebang Shen, Jiayuan Ye, Anmin Kang, Hamed Hassani, Reza Shokri:
Share Your Representation Only: Guaranteed Improvement of the Privacy-Utility Tradeoff in Federated Learning. CoRR abs/2309.05505 (2023) - [i103]Alexander Robey, Eric Wong, Hamed Hassani, George J. Pappas:
SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks. CoRR abs/2310.03684 (2023) - [i102]Behrad Moniri, Donghwan Lee, Hamed Hassani, Edgar Dobriban:
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks. CoRR abs/2310.07891 (2023) - [i101]Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, Eric Wong:
Jailbreaking Black Box Large Language Models in Twenty Queries. CoRR abs/2310.08419 (2023) - [i100]Eric Lei, Arman Adibi, Hamed Hassani:
Score-Based Methods for Discrete Optimization in Deep Learning. CoRR abs/2310.09890 (2023) - [i99]Thomas Waite, Alexander Robey, Hamed Hassani, George J. Pappas, Radoslav Ivanov:
Data-Driven Modeling and Verification of Perception-Based Autonomous Systems. CoRR abs/2312.06848 (2023) - 2022
- [j23]Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, Ramtin Pedarsani:
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity. IEEE J. Sel. Areas Inf. Theory 3(2): 197-205 (2022) - [j22]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Neural Estimation of the Rate-Distortion Function With Applications to Operational Source Coding. IEEE J. Sel. Areas Inf. Theory 3(4): 674-686 (2022) - [j21]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Robust Classification Under $\ell_0$ Attack for the Gaussian Mixture Model. SIAM J. Math. Data Sci. 4(1): 362-385 (2022) - [j20]Xingran Chen, Konstantinos Gatsis, Hamed Hassani, Shirin Saeedi Bidokhti:
Age of Information in Random Access Channels. IEEE Trans. Inf. Theory 68(10): 6548-6568 (2022) - [c89]Arman Adibi, Aryan Mokhtari, Hamed Hassani:
Minimax Optimization: The Case of Convex-Submodular. AISTATS 2022: 3556-3580 - [c88]Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi:
Federated Functional Gradient Boosting. AISTATS 2022: 7814-7840 - [c87]Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J. Pappas, Rajeev Alur:
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks. CDC 2022: 3389-3396 - [c86]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control. CDC 2022: 3416-3423 - [c85]Arman Adibi, Aritra Mitra, George J. Pappas, Hamed Hassani:
Distributed Statistical Min-Max Learning in the Presence of Byzantine Agents. CDC 2022: 4179-4184 - [c84]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker Planck Equation. COLT 2022: 817-841 - [c83]Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, Ramtin Pedarsani:
Adaptive Node Participation for Straggler-Resilient Federated Learning. ICASSP 2022: 8762-8766 - [c82]Mohammad Vahid Jamali, Mohammad Fereydounian, Hessam Mahdavifar, Hamed Hassani:
Low-Complexity Decoding of a Class of Reed-Muller Subcodes for Low-Capacity Channels. ICC 2022: 123-128 - [c81]Zebang Shen, Juan Cerviño, Hamed Hassani, Alejandro Ribeiro:
An Agnostic Approach to Federated Learning with Class Imbalance. ICLR 2022 - [c80]Allan Zhou, Fahim Tajwar, Alexander Robey, Tom Knowles, George J. Pappas, Hamed Hassani, Chelsea Finn:
Do deep networks transfer invariances across classes? ICLR 2022 - [c79]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani:
Probabilistically Robust Learning: Balancing Average and Worst-case Performance. ICML 2022: 18667-18686 - [c78]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Neural Estimation of the Rate-Distortion Function for Massive Datasets. ISIT 2022: 608-613 - [c77]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Binary Classification Under ℓ0 Attacks for General Noise Distribution. ISIT 2022: 1731-1736 - [c76]Mark Beliaev, Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Efficient and Robust Classification for Sparse Attacks. ISIT 2022: 3150-3155 - [c75]Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai:
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning. NeurIPS 2022 - [c74]Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf:
Probable Domain Generalization via Quantile Risk Minimization. NeurIPS 2022 - [c73]Xinmeng Huang, Donghwan Lee, Edgar Dobriban, Hamed Hassani:
Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints. NeurIPS 2022 - [c72]Aritra Mitra, Arman Adibi, George J. Pappas, Hamed Hassani:
Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds. NeurIPS 2022 - [i98]Hamed Hassani, Adel Javanmard:
The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression. CoRR abs/2201.05149 (2022) - [i97]Mark Beliaev, Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Efficient and Robust Classification for Sparse Attacks. CoRR abs/2201.09369 (2022) - [i96]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani:
Probabilistically Robust Learning: Balancing Average- and Worst-case Performance. CoRR abs/2202.01136 (2022) - [i95]Mohammad Vahid Jamali, Mohammad Fereydounian, Hessam Mahdavifar, Hamed Hassani:
Low-Complexity Decoding of a Class of Reed-Muller Subcodes for Low-Capacity Channels. CoRR abs/2202.03654 (2022) - [i94]Mohammad Fereydounian, Hamed Hassani, Javid Dadashkarimi, Amin Karbasi:
The Exact Class of Graph Functions Generated by Graph Neural Networks. CoRR abs/2202.08833 (2022) - [i93]Mohammad Fereydounian, Aryan Mokhtari, Ramtin Pedarsani, Hamed Hassani:
Provably Private Distributed Averaging Consensus: An Information-Theoretic Approach. CoRR abs/2202.09398 (2022) - [i92]Aritra Mitra, Hamed Hassani, George J. Pappas:
Linear Stochastic Bandits over a Bit-Constrained Channel. CoRR abs/2203.01198 (2022) - [i91]Donghwan Lee, Xinmeng Huang, Hamed Hassani, Edgar Dobriban:
T-Cal: An optimal test for the calibration of predictive models. CoRR abs/2203.01850 (2022) - [i90]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Binary Classification Under 𝓁0 Attacks for General Noise Distribution. CoRR abs/2203.04855 (2022) - [i89]Allan Zhou, Fahim Tajwar, Alexander Robey, Tom Knowles, George J. Pappas, Hamed Hassani, Chelsea Finn:
Do Deep Networks Transfer Invariances Across Classes? CoRR abs/2203.09739 (2022) - [i88]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control. CoRR abs/2203.10763 (2022) - [i87]Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J. Pappas, Rajeev Alur:
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks. CoRR abs/2204.00846 (2022) - [i86]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Neural Estimation of the Rate-Distortion Function With Applications to Operational Source Coding. CoRR abs/2204.01612 (2022) - [i85]Arman Adibi, Aritra Mitra, George J. Pappas, Hamed Hassani:
Distributed Statistical Min-Max Learning in the Presence of Byzantine Agents. CoRR abs/2204.03187 (2022) - [i84]Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai:
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning. CoRR abs/2205.13692 (2022) - [i83]Xinmeng Huang, Donghwan Lee, Edgar Dobriban, Hamed Hassani:
Collaborative Learning of Distributions under Heterogeneity and Communication Constraints. CoRR abs/2206.00707 (2022) - [i82]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker-Planck Equation. CoRR abs/2206.00860 (2022) - [i81]Isidoros Tziotis, Zebang Shen, Ramtin Pedarsani, Hamed Hassani, Aryan Mokhtari:
Straggler-Resilient Personalized Federated Learning. CoRR abs/2206.02078 (2022) - [i80]Aritra Mitra, Arman Adibi, George J. Pappas, Hamed Hassani:
Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds. CoRR abs/2206.02834 (2022) - [i79]Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pappas, Hamed Hassani, Corina S. Pasareanu, Clark W. Barrett:
Toward Certified Robustness Against Real-World Distribution Shifts. CoRR abs/2206.03669 (2022) - [i78]Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf:
Probable Domain Generalization via Quantile Risk Minimization. CoRR abs/2207.09944 (2022) - [i77]Alexander Shevchenko, Kevin Kögler, Hamed Hassani, Marco Mondelli:
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods. CoRR abs/2212.13468 (2022) - 2021
- [j19]Konstantinos Gatsis, Hamed Hassani, George J. Pappas:
Latency-Reliability Tradeoffs for State Estimation. IEEE Trans. Autom. Control. 66(3): 1009-1023 (2021) - [j18]Arman Fazeli, Hamed Hassani, Marco Mondelli, Alexander Vardy:
Binary Linear Codes With Optimal Scaling: Polar Codes With Large Kernels. IEEE Trans. Inf. Theory 67(9): 5693-5710 (2021) - [j17]Deepak S. Kalhan, Amrit Singh Bedi, Alec Koppel, Ketan Rajawat, Hamed Hassani, Abhishek K. Gupta, Adrish Banerjee:
Dynamic Online Learning via Frank-Wolfe Algorithm. IEEE Trans. Signal Process. 69: 932-947 (2021) - [c71]Aritra Mitra, Rayana H. Jaafar, George J. Pappas, Hamed Hassani:
Federated Learning with Incrementally Aggregated Gradients. CDC 2021: 775-782 - [c70]Aritra Mitra, Hamed Hassani, George J. Pappas:
Online Federated Learning. CDC 2021: 4083-4090 - [c69]Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai:
Exploiting Shared Representations for Personalized Federated Learning. ICML 2021: 2089-2099 - [c68]Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Deep Reinforcement Learning for Active Target Tracking. ICRA 2021: 1825-1831 - [c67]Alexander Robey, Arman Adibi, Brent Schlotfeldt, Hamed Hassani, George J. Pappas:
Optimal Algorithms for Submodular Maximization with Distributed Constraints. L4DC 2021: 150-162 - [c66]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, Alejandro Ribeiro:
Adversarial Robustness with Semi-Infinite Constrained Learning. NeurIPS 2021: 6198-6215 - [c65]Aritra Mitra, Rayana H. Jaafar, George J. Pappas, Hamed Hassani:
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients. NeurIPS 2021: 14606-14619 - [c64]Alexander Robey, George J. Pappas, Hamed Hassani:
Model-Based Domain Generalization. NeurIPS 2021: 20210-20229 - [i76]Aritra Mitra, Rayana H. Jaafar, George J. Pappas, Hamed Hassani:
Achieving Linear Convergence in Federated Learning under Objective and Systems Heterogeneity. CoRR abs/2102.07053 (2021) - [i75]Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai:
Exploiting Shared Representations for Personalized Federated Learning. CoRR abs/2102.07078 (2021) - [i74]Alexander Robey, George J. Pappas, Hamed Hassani:
Model-Based Domain Generalization. CoRR abs/2102.11436 (2021) - [i73]Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi:
Federated Functional Gradient Boosting. CoRR abs/2103.06972 (2021) - [i72]Payam Delgosha, Hamed Hassani, Ramtin Pedarsani:
Robust Classification Under 𝓁0 Attack for the Gaussian Mixture Model. CoRR abs/2104.02189 (2021) - [i71]Francisco Barreras, Mikhail Hayhoe, Hamed Hassani, Victor M. Preciado:
AutoEKF: Scalable System Identification for COVID-19 Forecasting from Large-Scale GPS Data. CoRR abs/2106.14357 (2021) - [i70]Aritra Mitra, Hamed Hassani, George J. Pappas:
Exploiting Heterogeneity in Robust Federated Best-Arm Identification. CoRR abs/2109.05700 (2021) - [i69]Eric Lei, Hamed Hassani, Shirin Saeedi Bidokhti:
Out-of-Distribution Robustness in Deep Learning Compression. CoRR abs/2110.07007 (2021) - [i68]Alexander Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani, Alejandro Ribeiro:
Adversarial Robustness with Semi-Infinite Constrained Learning. CoRR abs/2110.15767 (2021) - [i67]Arman Adibi, Aryan Mokhtari, Hamed Hassani:
Minimax Optimization: The Case of Convex-Submodular. CoRR abs/2111.01262 (2021) - [i66]Bruce D. Lee, Thomas T. C. K. Zhang, Hamed Hassani, Nikolai Matni:
Adversarial Tradeoffs in Linear Inverse Problems and Robust State Estimation. CoRR abs/2111.08864 (2021) - 2020
- [j16]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization. J. Mach. Learn. Res. 21: 105:1-105:49 (2020) - [j15]Hamed Hassani, Amin Karbasi, Aryan Mokhtari, Zebang Shen:
Stochastic Conditional Gradient++: (Non)Convex Minimization and Continuous Submodular Maximization. SIAM J. Optim. 30(4): 3315-3344 (2020) - [c63]Lin Chen, Mingrui Zhang, Hamed Hassani, Amin Karbasi:
Black Box Submodular Maximization: Discrete and Continuous Settings. AISTATS 2020: 1058-1070 - [c62]Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, Ramtin Pedarsani:
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization. AISTATS 2020: 2021-2031 - [c61]Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free. AISTATS 2020: 3696-3706 - [c60]Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
One Sample Stochastic Frank-Wolfe. AISTATS 2020: 4012-4023 - [c59]Adel Javanmard, Mahdi Soltanolkotabi, Hamed Hassani:
Precise Tradeoffs in Adversarial Training for Linear Regression. COLT 2020: 2034-2078 - [c58]Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
Quantized Decentralized Stochastic Learning over Directed Graphs. ICML 2020: 9324-9333 - [c57]Xingran Chen, Konstantinos Gatsis, Hamed Hassani, Shirin Saeedi Bidokhti:
Age of Information in Random Access Channels. ISIT 2020: 1770-1775 - [c56]Arman Adibi, Aryan Mokhtari, Hamed Hassani:
Submodular Meta-Learning. NeurIPS 2020 - [c55]Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, Hamed Hassani:
Sinkhorn Barycenter via Functional Gradient Descent. NeurIPS 2020 - [c54]Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, Hamed Hassani:
Sinkhorn Natural Gradient for Generative Models. NeurIPS 2020 - [i65]Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
Quantized Push-sum for Gossip and Decentralized Optimization over Directed Graphs. CoRR abs/2002.09964 (2020) - [i64]Adel Javanmard, Mahdi Soltanolkotabi, Hamed Hassani:
Precise Tradeoffs in Adversarial Training for Linear Regression. CoRR abs/2002.10477 (2020) - [i63]Alexander Robey, Hamed Hassani, George J. Pappas:
Model-Based Robust Deep Learning. CoRR abs/2005.10247 (2020) - [i62]Edgar Dobriban, Hamed Hassani, David Hong, Alexander Robey:
Provable tradeoffs in adversarially robust classification. CoRR abs/2006.05161 (2020) - [i61]Heejin Jeong, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning to Track Dynamic Targets in Partially Known Environments. CoRR abs/2006.10190 (2020) - [i60]Mohammad Fereydounian, Zebang Shen, Aryan Mokhtari, Amin Karbasi, Hamed Hassani:
Safe Learning under Uncertain Objectives and Constraints. CoRR abs/2006.13326 (2020) - [i59]Arman Adibi, Aryan Mokhtari, Hamed Hassani:
Submodular Meta-Learning. CoRR abs/2007.05852 (2020) - [i58]Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, Hamed Hassani:
Sinkhorn Barycenter via Functional Gradient Descent. CoRR abs/2007.10449 (2020) - [i57]Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, Hamed Hassani:
Sinkhorn Natural Gradient for Generative Models. CoRR abs/2011.04162 (2020) - [i56]Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, Ramtin Pedarsani:
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity. CoRR abs/2012.14453 (2020)
2010 – 2019
- 2019
- [j14]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
A New Coding Paradigm for the Primitive Relay Channel. Algorithms 12(10): 218 (2019) - [j13]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
Construction of Polar Codes With Sublinear Complexity. IEEE Trans. Inf. Theory 65(5): 2782-2791 (2019) - [j12]Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
An Exact Quantized Decentralized Gradient Descent Algorithm. IEEE Trans. Signal Process. 67(19): 4934-4947 (2019) - [c53]Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi:
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs. ICML 2019: 414-423 - [c52]Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, Chao Mi:
Hessian Aided Policy Gradient. ICML 2019: 5729-5738 - [c51]Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning Q-network for Active Information Acquisition. IROS 2019: 6822-6827 - [c50]Mohammad Fereydounian, Xingran Chen, Hamed Hassani, Shirin Saeedi Bidokhti:
Non-asymptotic Coded Slotted ALOHA. ISIT 2019: 111-115 - [c49]Mohammad Fereydounian, Mohammad Vahid Jamali, Hamed Hassani, Hessam Mahdavifar:
Channel Coding at Low Capacity. ITW 2019: 1-5 - [c48]Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
Robust and Communication-Efficient Collaborative Learning. NeurIPS 2019: 8386-8397 - [c47]Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback. NeurIPS 2019: 9206-9217 - [c46]Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, George J. Pappas:
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. NeurIPS 2019: 11423-11434 - [c45]Amin Karbasi, Hamed Hassani, Aryan Mokhtari, Zebang Shen:
Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match. NeurIPS 2019: 13066-13076 - [i55]Lin Chen, Mingrui Zhang, Hamed Hassani, Amin Karbasi:
Black Box Submodular Maximization: Discrete and Continuous Settings. CoRR abs/1901.09515 (2019) - [i54]Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Quantized Frank-Wolfe: Communication-Efficient Distributed Optimization. CoRR abs/1902.06332 (2019) - [i53]Hamed Hassani, Amin Karbasi, Aryan Mokhtari, Zebang Shen:
Stochastic Conditional Gradient++. CoRR abs/1902.06992 (2019) - [i52]Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, George J. Pappas:
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks. CoRR abs/1906.04893 (2019) - [i51]Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
Robust and Communication-Efficient Collaborative Learning. CoRR abs/1907.10595 (2019) - [i50]Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, Ramtin Pedarsani:
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization. CoRR abs/1909.13014 (2019) - [i49]Alexander Robey, Arman Adibi, Brent Schlotfeldt, George J. Pappas, Hamed Hassani:
Optimal Algorithms for Submodular Maximization with Distributed Constraints. CoRR abs/1909.13676 (2019) - [i48]Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
One Sample Stochastic Frank-Wolfe. CoRR abs/1910.04322 (2019) - [i47]Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D. Lee, George J. Pappas:
Learning Q-network for Active Information Acquisition. CoRR abs/1910.10754 (2019) - [i46]Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback. CoRR abs/1910.12424 (2019) - [i45]Xingran Chen, Konstantinos Gatsis, Hamed Hassani, Shirin Saeedi Bidokhti:
Age of Information in Random Access Channels. CoRR abs/1912.01473 (2019) - 2018
- [j11]Seyyed Ali Hashemi, Marco Mondelli, S. Hamed Hassani, Carlo Condo, Rüdiger L. Urbanke, Warren J. Gross:
Decoder Partitioning: Towards Practical List Decoding of Polar Codes. IEEE Trans. Commun. 66(9): 3749-3759 (2018) - [j10]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
How to Achieve the Capacity of Asymmetric Channels. IEEE Trans. Inf. Theory 64(5): 3371-3393 (2018) - [c44]Adish Singla, Seyed Hamed Hassani, Andreas Krause:
Learning to Interact With Learning Agents. AAAI 2018: 4083-4090 - [c43]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap. AISTATS 2018: 1886-1895 - [c42]Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization. AISTATS 2018: 1896-1905 - [c41]Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ramtin Pedarsani:
Quantized Decentralized Consensus Optimization. CDC 2018: 5838-5843 - [c40]Lin Chen, Christopher Harshaw, Hamed Hassani, Amin Karbasi:
Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity. ICML 2018: 813-822 - [c39]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings. ICML 2018: 3613-3622 - [c38]S. Hamed Hassani, Shrinivas Kudekar, Or Ordentlich, Yury Polyanskiy, Rüdiger L. Urbanke:
Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels. ISIT 2018: 311-315 - [c37]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
A New Coding Paradigm for the Primitive Relay Channel. ISIT 2018: 351-355 - [c36]Arman Fazeli, S. Hamed Hassani, Marco Mondelli, Alexander Vardy:
Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels. ITW 2018: 1-5 - [c35]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. UAI 2018: 229-237 - [i44]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
A New Coding Paradigm for the Primitive Relay Channel. CoRR abs/1801.03153 (2018) - [i43]S. Hamed Hassani, Shrinivas Kudekar, Or Ordentlich, Yury Polyanskiy, Rüdiger L. Urbanke:
Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels. CoRR abs/1801.09481 (2018) - [i42]Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization. CoRR abs/1802.06052 (2018) - [i41]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization. CoRR abs/1804.09554 (2018) - [i40]Amirhossein Reisizadeh, Aryan Mokhtari, S. Hamed Hassani, Ramtin Pedarsani:
Quantized Decentralized Consensus Optimization. CoRR abs/1806.11536 (2018) - [i39]Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka:
Discrete Sampling using Semigradient-based Product Mixtures. CoRR abs/1807.01808 (2018) - [i38]Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi:
Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs. CoRR abs/1810.04147 (2018) - [i37]Konstantinos Gatsis, Hamed Hassani, George J. Pappas:
Latency-Reliability Tradeoffs for State Estimation. CoRR abs/1810.11831 (2018) - [i36]Mikhail Hayhoe, Francisco Barreras, Hamed Hassani, Victor M. Preciado:
SPECTRE: Seedless Network Alignment via Spectral Centralities. CoRR abs/1811.01056 (2018) - [i35]Mohammad Fereydounian, Mohammad Vahid Jamali, Hamed Hassani, Hessam Mahdavifar:
Channel Coding at Low Capacity. CoRR abs/1811.04322 (2018) - 2017
- [c34]Lin Chen, Seyed Hamed Hassani, Amin Karbasi:
Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting. AAAI 2017: 1798-1804 - [c33]Yuxin Chen, Seyed Hamed Hassani, Andreas Krause:
Near-optimal Bayesian Active Learning with Correlated and Noisy Tests. AISTATS 2017: 223-231 - [c32]Seyyed Ali Hashemi, Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke, Warren J. Gross:
Partitioned List Decoding of Polar Codes: Analysis and Improvement of Finite Length Performance. GLOBECOM 2017: 1-7 - [c31]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Uniform Deviation Bounds for k-Means Clustering. ICML 2017: 283-291 - [c30]Dimitris Achlioptas, S. Hamed Hassani, Wei Liu, Rüdiger L. Urbanke:
Time-invariant LDPC convolutional codes. ISIT 2017: 366-370 - [c29]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
Construction of polar codes with sublinear complexity. ISIT 2017: 1853-1857 - [c28]S. Hamed Hassani, Mahdi Soltanolkotabi, Amin Karbasi:
Gradient Methods for Submodular Maximization. NIPS 2017: 5841-5851 - [c27]Mohammad Reza Karimi, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Stochastic Submodular Maximization: The Case of Coverage Functions. NIPS 2017: 6853-6863 - [c26]Marco Mondelli, S. Hamed Hassani, Ivana Maric, Dennis Hui, Song-Nam Hong:
Capacity-Achieving Rate-Compatible Polar Codes for General Channels. WCNC Workshops 2017: 1-6 - [i34]Dimitris Achlioptas, Seyed Hamed Hassani, Wei Liu, Rüdiger L. Urbanke:
Time-Invariant LDPC Convolutional Codes. CoRR abs/1702.04539 (2017) - [i33]Adish Singla, Seyed Hamed Hassani, Andreas Krause:
Learning to Use Learners' Advice. CoRR abs/1702.04825 (2017) - [i32]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Uniform Deviation Bounds for Unbounded Loss Functions like k-Means. CoRR abs/1702.08249 (2017) - [i31]Seyyed Ali Hashemi, Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke, Warren J. Gross:
Partitioned List Decoding of Polar Codes: Analysis and Improvement of Finite Length Performance. CoRR abs/1705.05497 (2017) - [i30]Hadi Daneshmand, Hamed Hassani, Thomas Hofmann:
Accelerated Dual Learning by Homotopic Initialization. CoRR abs/1706.03958 (2017) - [i29]S. Hamed Hassani, Mahdi Soltanolkotabi, Amin Karbasi:
Gradient Methods for Submodular Maximization. CoRR abs/1708.03949 (2017) - [i28]Arman Fazeli, S. Hamed Hassani, Marco Mondelli, Alexander Vardy:
Binary Linear Codes with Optimal Scaling and Quasi-Linear Complexity. CoRR abs/1711.01339 (2017) - [i27]Mohammad Reza Karimi, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Stochastic Submodular Maximization: The Case of Coverage Functions. CoRR abs/1711.01566 (2017) - [i26]Aryan Mokhtari, S. Hamed Hassani, Amin Karbasi:
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap. CoRR abs/1711.01660 (2017) - 2016
- [j9]Ehsan Kazemi, Seyed Hamed Hassani, Matthias Grossglauser, Hassan Pezeshgi Modarres:
PROPER: global protein interaction network alignment through percolation matching. BMC Bioinform. 17: 527:1-527:16 (2016) - [j8]Joseph M. Renes, David Sutter, Seyed Hamed Hassani:
Alignment of Polarized Sets. IEEE J. Sel. Areas Commun. 34(2): 224-238 (2016) - [j7]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
Unified Scaling of Polar Codes: Error Exponent, Scaling Exponent, Moderate Deviations, and Error Floors. IEEE Trans. Inf. Theory 62(12): 6698-6712 (2016) - [c25]Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause:
Approximate K-Means++ in Sublinear Time. AAAI 2016: 1459-1467 - [c24]Olivier Bachem, Mario Lucic, Seyed Hamed Hassani, Andreas Krause:
Fast and Provably Good Seedings for k-Means. NIPS 2016: 55-63 - [c23]Dimitris Achlioptas, Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
Bounds for Random Constraint Satisfaction Problems via Spatial Coupling. SODA 2016: 469-479 - [i25]Lin Chen, S. Hamed Hassani, Amin Karbasi:
Dimension Coupling: Optimal Active Learning of Halfspaces via Query Synthesis. CoRR abs/1603.03515 (2016) - [i24]Yuxin Chen, S. Hamed Hassani, Andreas Krause:
Near-optimal Bayesian Active Learning with Correlated and Noisy Tests. CoRR abs/1605.07334 (2016) - [i23]Marco Mondelli, S. Hamed Hassani, Ivana Maric, Dennis Hui, Song-Nam Hong:
Capacity-Achieving Rate-Compatible Polar Codes for General Channels. CoRR abs/1611.01199 (2016) - [i22]Marco Mondelli, S. Hamed Hassani, Rüdiger L. Urbanke:
Construction of Polar Codes with Sublinear Complexity. CoRR abs/1612.05295 (2016) - 2015
- [j6]Ehsan Kazemi, Seyed Hamed Hassani, Matthias Grossglauser:
Growing a Graph Matching from a Handful of Seeds. Proc. VLDB Endow. 8(10): 1010-1021 (2015) - [j5]Marco Mondelli, Seyed Hamed Hassani, Igal Sason, Rüdiger L. Urbanke:
Achieving Marton's Region for Broadcast Channels Using Polar Codes. IEEE Trans. Inf. Theory 61(2): 783-800 (2015) - [j4]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Scaling Exponent of List Decoders With Applications to Polar Codes. IEEE Trans. Inf. Theory 61(9): 4838-4851 (2015) - [c22]Yuxin Chen, S. Hamed Hassani, Amin Karbasi, Andreas Krause:
Sequential Information Maximization: When is Greedy Near-optimal? COLT 2015: 338-363 - [c21]Marco Mondelli, Rüdiger L. Urbanke, Seyed Hamed Hassani:
Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors. ISIT 2015: 1422-1426 - [c20]Joseph M. Renes, David Sutter, Seyed Hamed Hassani:
Alignment of polarized sets. ISIT 2015: 2446-2450 - [c19]Alkis Gotovos, S. Hamed Hassani, Andreas Krause:
Sampling from Probabilistic Submodular Models. NIPS 2015: 1945-1953 - [i21]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Unified Scaling of Polar Codes: Error Exponent, Scaling Exponent, Moderate Deviations, and Error Floors. CoRR abs/1501.02444 (2015) - 2014
- [j3]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
From Polar to Reed-Muller Codes: A Technique to Improve the Finite-Length Performance. IEEE Trans. Commun. 62(9): 3084-3091 (2014) - [j2]Seyed Hamed Hassani, Kasra Alishahi, Rüdiger L. Urbanke:
Finite-Length Scaling for Polar Codes. IEEE Trans. Inf. Theory 60(10): 5875-5898 (2014) - [c18]Marco Mondelli, Rüdiger L. Urbanke, Seyed Hamed Hassani:
How to achieve the capacity of asymmetric channels. Allerton 2014: 789-796 - [c17]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
From polar to Reed-Muller codes: A technique to improve the finite-length performance. ISIT 2014: 131-135 - [c16]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke, Igal Sason:
Achieving Marton's region for broadcast channels using polar codes. ISIT 2014: 306-310 - [c15]Seyed Hamed Hassani, Rüdiger L. Urbanke:
Universal polar codes. ISIT 2014: 1451-1455 - [i20]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
From Polar to Reed-Muller Codes: a Technique to Improve the Finite-Length Performance. CoRR abs/1401.3127 (2014) - [i19]Marco Mondelli, Seyed Hamed Hassani, Igal Sason, Rüdiger L. Urbanke:
Achieving the Superposition and Binning Regions for Broadcast Channels Using Polar Codes. CoRR abs/1401.6060 (2014) - [i18]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
How to Achieve the Capacity of Asymmetric Channels. CoRR abs/1406.7373 (2014) - [i17]Joseph M. Renes, David Sutter, Seyed Hamed Hassani:
Alignment of Polarized Sets. CoRR abs/1411.7925 (2014) - 2013
- [b1]Seyed Hamed Hassani:
Polarization and Spatial Coupling - Two Techniques to Boost Performance. EPFL, Switzerland, 2013 - [j1]Seyed Hamed Hassani, Ryuhei Mori, Toshiyuki Tanaka, Rüdiger L. Urbanke:
Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization. IEEE Trans. Inf. Theory 59(4): 2267-2276 (2013) - [c14]Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
The space of solutions of coupled XORSAT formulae. ISIT 2013: 2453-2457 - [c13]Wei Liu, Seyed Hamed Hassani, Rüdiger L. Urbanke:
The least degraded and the least upgraded channel with respect to a channel family. ITW 2013: 1-5 - [c12]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Scaling exponent of list decoders with applications to polar codes. ITW 2013: 1-5 - [c11]S. Hamed Hassani:
Extended polar codes perform better in terms of compound rate and scaling behavior. IWCIT 2013: 1-5 - [i16]Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
The Space of Solutions of Coupled XORSAT Formulae. CoRR abs/1303.0540 (2013) - [i15]Seyed Hamed Hassani, Kasra Alishahi, Rüdiger L. Urbanke:
Finite-Length Scaling of Polar Codes. CoRR abs/1304.4778 (2013) - [i14]Wei Liu, Seyed Hamed Hassani, Rüdiger L. Urbanke:
The Least Degraded and the Least Upgraded Channel with respect to a Channel Family. CoRR abs/1304.5150 (2013) - [i13]Marco Mondelli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Scaling Exponent of List Decoders with Applications to Polar Codes. CoRR abs/1304.5220 (2013) - [i12]Seyed Hamed Hassani, Rüdiger L. Urbanke:
Universal Polar Codes. CoRR abs/1307.7223 (2013) - 2012
- [c10]Ali Goli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Universal bounds on the scaling behavior of polar codes. ISIT 2012: 1957-1961 - [c9]Seyed Hamed Hassani, Rüdiger L. Urbanke:
Polar codes: Robustness of the successive cancellation decoder with respect to quantization. ISIT 2012: 1962-1966 - [i11]Ali Goli, Seyed Hamed Hassani, Rüdiger L. Urbanke:
Universal Bounds on the Scaling Behavior of Polar Codes. CoRR abs/1205.2876 (2012) - [i10]Ramtin Pedarsani, Seyed Hamed Hassani, Ido Tal, Emre Telatar:
On the Construction of Polar Codes. CoRR abs/1209.4444 (2012) - [i9]Seyed Hamed Hassani, Rüdiger L. Urbanke:
Polar Codes: Robustness of the Successive Cancellation Decoder with Respect to Quantization. CoRR abs/1209.4612 (2012) - 2011
- [c8]Ramtin Pedarsani, Seyed Hamed Hassani, Ido Tal, Emre Telatar:
On the construction of polar codes. ISIT 2011: 11-15 - [c7]Seyed Hamed Hassani, Nicolas Macris, Ryuhei Mori:
Near concavity of the growth rate for coupled LDPC chains. ISIT 2011: 356-360 - [i8]Seyed Hamed Hassani, Nicolas Macris, Ryuhei Mori:
Near concavity of the growth rate for coupled LDPC chains. CoRR abs/1104.0599 (2011) - [i7]Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
Coupled Graphical Models and Their Thresholds. CoRR abs/1105.0785 (2011) - [i6]Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
Chains of Mean Field Models. CoRR abs/1105.0807 (2011) - [i5]Seyed Hamed Hassani, Ryuhei Mori, Toshiyuki Tanaka, Rüdiger L. Urbanke:
Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization. CoRR abs/1110.0194 (2011) - [i4]Seyed Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems. CoRR abs/1112.6320 (2011) - 2010
- [c6]Seyed Hamed Hassani, Rüdiger L. Urbanke:
On the scaling of polar codes: I. The behavior of polarized channels. ISIT 2010: 874-878 - [c5]Seyed Hamed Hassani, Kasra Alishahi, Rüdiger L. Urbanke:
On the scaling of polar codes: II. The behavior of un-polarized channels. ISIT 2010: 879-883 - [c4]S. Hamed Hassani, Nicolas Macris, Rüdiger L. Urbanke:
Coupled graphical models and their thresholds. ITW 2010: 1-5 - [i3]Seyed Hamed Hassani, Rüdiger L. Urbanke:
On the scaling of Polar codes: I. The behavior of polarized channels. CoRR abs/1001.2766 (2010) - [i2]Seyed Hamed Hassani, Kasra Alishahi, Rüdiger L. Urbanke:
On the scaling of Polar Codes: II. The behavior of un-polarized channels. CoRR abs/1002.3187 (2010)
2000 – 2009
- 2009
- [c3]S. Hamed Hassani, Satish Babu Korada, Rüdiger L. Urbanke:
The compound capacity of polar codes. Allerton 2009: 16-21 - [i1]Seyed Hamed Hassani, Satish Babu Korada, Rüdiger L. Urbanke:
The Compound Capacity of Polar Codes. CoRR abs/0907.3291 (2009) - 2007
- [c2]Seyed Hamed Hassani, Farid Ashtiani, Pouya Tehrani:
Non-Saturation Mode Analysis of IEEE 802.11 MAC Protocol. PIMRC 2007: 1-5 - 2006
- [c1]Seyed Hamed Hassani, Mohammad Reza Aref:
A New (t, n) Multi-Secret Sharing Scheme Based on Linear Algebra. SECRYPT 2006: 443-449
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-26 21:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint