default search action
Carl E. Rasmussen
Person information
- affiliation: University of Cambridge, Department of Engineering, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j17]Alexander Terenin, David R. Burt, Artem Artemev, Seth R. Flaxman, Mark van der Wilk, Carl Edward Rasmussen, Hong Ge:
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees. J. Mach. Learn. Res. 25: 26:1-26:36 (2024) - [j16]Talay M. Cheema, Carl Edward Rasmussen:
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes. Trans. Mach. Learn. Res. 2024 (2024) - 2023
- [i31]Talay M. Cheema, Carl Edward Rasmussen:
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes. CoRR abs/2308.14142 (2023) - 2022
- [c62]Vidhi Lalchand, Wessel P. Bruinsma, David R. Burt, Carl Edward Rasmussen:
Sparse Gaussian Process Hyperparameters: Optimize or Integrate? NeurIPS 2022 - [i30]Alexander Terenin, David R. Burt, Artem Artemev, Seth R. Flaxman, Mark van der Wilk, Carl Edward Rasmussen, Hong Ge:
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees. CoRR abs/2210.07893 (2022) - [i29]Vidhi Lalchand, Wessel P. Bruinsma, David R. Burt, Carl E. Rasmussen:
Sparse Gaussian Process Hyperparameters: Optimize or Integrate? CoRR abs/2211.02476 (2022) - 2021
- [c61]Yen-Chen Wu, Carl Edward Rasmussen:
Clipping Loops for Sample-Efficient Dialogue Policy Optimisation. NAACL-HLT 2021: 3420-3428 - [c60]Fergus Simpson, Ian Davies, Vidhi Lalchand, Alessandro Vullo, Nicolas Durrande, Carl Edward Rasmussen:
Kernel Identification Through Transformers. NeurIPS 2021: 10483-10495 - [c59]Fergus Simpson, Vidhi Lalchand, Carl Edward Rasmussen:
Marginalised Gaussian Processes with Nested Sampling. NeurIPS 2021: 13613-13625 - [c58]Sebastian W. Ober, Carl E. Rasmussen, Mark van der Wilk:
The promises and pitfalls of deep kernel learning. UAI 2021: 1206-1216 - [i28]Sebastian W. Ober, Carl E. Rasmussen, Mark van der Wilk:
The Promises and Pitfalls of Deep Kernel Learning. CoRR abs/2102.12108 (2021) - [i27]Fergus Simpson, Ian Davies, Vidhi Lalchand, Alessandro Vullo, Nicolas Durrande, Carl E. Rasmussen:
Kernel Identification Through Transformers. CoRR abs/2106.08185 (2021) - 2020
- [j15]Jan-Peter Calliess, Stephen J. Roberts, Carl Edward Rasmussen, Jan M. Maciejowski:
Lazily Adapted Constant Kinky Inference for nonparametric regression and model-reference adaptive control. Autom. 122: 109216 (2020) - [j14]David R. Burt, Carl Edward Rasmussen, Mark van der Wilk:
Convergence of Sparse Variational Inference in Gaussian Processes Regression. J. Mach. Learn. Res. 21: 131:1-131:63 (2020) - [c57]Martin Trapp, Robert Peharz, Franz Pernkopf, Carl Edward Rasmussen:
Deep Structured Mixtures of Gaussian Processes. AISTATS 2020: 2251-2261 - [c56]Yen-Chen Wu, Bo-Hsiang Tseng, Carl Edward Rasmussen:
Improving Sample-Efficiency in Reinforcement Learning for Dialogue Systems by Using Trainable-Action-Mask. ICASSP 2020: 8024-8028 - [c55]Ushnish Sengupta, Matt Amos, J. Scott Hosking, Carl Edward Rasmussen, Matthew P. Juniper, Paul J. Young:
Ensembling geophysical models with Bayesian Neural Networks. NeurIPS 2020 - [i26]David R. Burt, Carl Edward Rasmussen, Mark van der Wilk:
Variational Orthogonal Features. CoRR abs/2006.13170 (2020) - [i25]David R. Burt, Carl Edward Rasmussen, Mark van der Wilk:
Convergence of Sparse Variational Inference in Gaussian Processes Regression. CoRR abs/2008.00323 (2020) - [i24]Ushnish Sengupta, Matt Amos, J. Scott Hosking, Carl Edward Rasmussen, Matthew P. Juniper, Paul J. Young:
Ensembling geophysical models with Bayesian Neural Networks. CoRR abs/2010.03561 (2020) - [i23]Fergus Simpson, Vidhi Lalchand, Carl Edward Rasmussen:
Marginalised Gaussian Processes with Nested Sampling. CoRR abs/2010.16344 (2020)
2010 – 2019
- 2019
- [c54]Vidhi Lalchand, Carl Edward Rasmussen:
Approximate Inference for Fully Bayesian Gaussian Process Regression. AABI 2019: 1-12 - [c53]Adrià Garriga-Alonso, Carl Edward Rasmussen, Laurence Aitchison:
Deep Convolutional Networks as shallow Gaussian Processes. ICLR (Poster) 2019 - [c52]David R. Burt, Carl Edward Rasmussen, Mark van der Wilk:
Rates of Convergence for Sparse Variational Gaussian Process Regression. ICML 2019: 862-871 - [c51]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models. ICML 2019: 2931-2940 - [i22]Paavo Parmas, Carl Edward Rasmussen, Jan Peters, Kenji Doya:
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos. CoRR abs/1902.01240 (2019) - [i21]David R. Burt, Carl E. Rasmussen, Mark van der Wilk:
Rates of Convergence for Sparse Variational Gaussian Process Regression. CoRR abs/1903.03571 (2019) - [i20]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models. CoRR abs/1906.05828 (2019) - [i19]Martin Trapp, Robert Peharz, Franz Pernkopf, Carl E. Rasmussen:
Deep Structured Mixtures of Gaussian Processes. CoRR abs/1910.04536 (2019) - [i18]Sebastian W. Ober, Carl Edward Rasmussen:
Benchmarking the Neural Linear Model for Regression. CoRR abs/1912.08416 (2019) - [i17]Vidhi Lalchand, Carl Edward Rasmussen:
Approximate Inference for Fully Bayesian Gaussian Process Regression. CoRR abs/1912.13440 (2019) - 2018
- [c50]Jan-Peter Calliess, Stephen J. Roberts, Carl E. Rasmussen, Jan M. Maciejowski:
Nonlinear Set Membership Regression with Adaptive Hyper-Parameter Estimation for Online Learning and Control. ECC 2018: 1-6 - [c49]Paavo Parmas, Carl Edward Rasmussen, Jan Peters, Kenji Doya:
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos. ICML 2018: 4062-4071 - [i16]Adrià Garriga-Alonso, Laurence Aitchison, Carl Edward Rasmussen:
Deep Convolutional Networks as shallow Gaussian Processes. CoRR abs/1808.05587 (2018) - [i15]Martin Trapp, Robert Peharz, Carl E. Rasmussen, Franz Pernkopf:
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks. CoRR abs/1809.04400 (2018) - [i14]Alessandro Davide Ialongo, Mark van der Wilk, Carl Edward Rasmussen:
Closed-form Inference and Prediction in Gaussian Process State-Space Models. CoRR abs/1812.03580 (2018) - [i13]Alessandro Davide Ialongo, Mark van der Wilk, James Hensman, Carl Edward Rasmussen:
Non-Factorised Variational Inference in Dynamical Systems. CoRR abs/1812.06067 (2018) - 2017
- [c48]Rowan McAllister, Carl Edward Rasmussen:
Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs. NIPS 2017: 2040-2049 - [c47]Mark van der Wilk, Carl Edward Rasmussen, James Hensman:
Convolutional Gaussian Processes. NIPS 2017: 2849-2858 - [i12]Mark van der Wilk, Carl Edward Rasmussen, James Hensman:
Convolutional Gaussian Processes. CoRR abs/1709.01894 (2017) - 2016
- [c46]Roberto Calandra, Jan Peters, Carl Edward Rasmussen, Marc Peter Deisenroth:
Manifold Gaussian Processes for regression. IJCNN 2016: 3338-3345 - [c45]Matthias Bauer, Mark van der Wilk, Carl Edward Rasmussen:
Understanding Probabilistic Sparse Gaussian Process Approximations. NIPS 2016: 1525-1533 - [i11]Rowan McAllister, Carl Edward Rasmussen:
Data-Efficient Reinforcement Learning in Continuous-State POMDPs. CoRR abs/1602.02523 (2016) - [i10]Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, Bernhard Schölkopf:
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481). Dagstuhl Reports 6(11): 142-167 (2016) - 2015
- [j13]Marc Peter Deisenroth, Dieter Fox, Carl Edward Rasmussen:
Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 408-423 (2015) - [i9]Marc Peter Deisenroth, Dieter Fox, Carl Edward Rasmussen:
Gaussian Processes for Data-Efficient Learning in Robotics and Control. CoRR abs/1502.02860 (2015) - 2014
- [c44]Bastian Bischoff, Duy Nguyen-Tuong, Herke van Hoof, Andrew McHutchon, Carl E. Rasmussen, Alois C. Knoll, Jan Peters, Marc Peter Deisenroth:
Policy search for learning robot control using sparse data. ICRA 2014: 3882-3887 - [c43]Yarin Gal, Mark van der Wilk, Carl E. Rasmussen:
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models. NIPS 2014: 3257-3265 - [c42]Roger Frigola, Yutian Chen, Carl E. Rasmussen:
Variational Gaussian Process State-Space Models. NIPS 2014: 3680-3688 - [i8]Yarin Gal, Mark van der Wilk, Carl E. Rasmussen:
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models. CoRR abs/1402.1389 (2014) - [i7]Roberto Calandra, Jan Peters, Carl Edward Rasmussen, Marc Peter Deisenroth:
Manifold Gaussian Processes for Regression. CoRR abs/1402.5876 (2014) - [i6]Roger Frigola, Yutian Chen, Carl E. Rasmussen:
Variational Gaussian Process State-Space Models. CoRR abs/1406.4905 (2014) - 2013
- [c41]Roger Frigola, Carl Edward Rasmussen:
Integrated pre-processing for Bayesian nonlinear system identification with Gaussian processes. CDC 2013: 5371-5376 - [c40]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC. NIPS 2013: 3156-3164 - [i5]Roger Frigola, Carl Edward Rasmussen:
Automated Bayesian System Identification with NARX Models. CoRR abs/1303.2912 (2013) - [i4]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC. CoRR abs/1306.2861 (2013) - [i3]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM. CoRR abs/1312.4852 (2013) - 2012
- [j12]Ryan D. Turner, Carl Edward Rasmussen:
Model based learning of sigma points in unscented Kalman filtering. Neurocomputing 80: 47-53 (2012) - [j11]Marc Peter Deisenroth, Ryan D. Turner, Marco F. Huber, Uwe D. Hanebeck, Carl Edward Rasmussen:
Robust Filtering and Smoothing with Gaussian Processes. IEEE Trans. Autom. Control. 57(7): 1865-1871 (2012) - [c39]Joseph Hall, Carl Edward Rasmussen, Jan M. Maciejowski:
Modelling and control of nonlinear systems using Gaussian processes with partial model information. CDC 2012: 5266-5271 - [c38]Michael A. Osborne, David Duvenaud, Roman Garnett, Carl E. Rasmussen, Stephen J. Roberts, Zoubin Ghahramani:
Active Learning of Model Evidence Using Bayesian Quadrature. NIPS 2012: 46-54 - [c37]John P. Cunningham, Zoubin Ghahramani, Carl Edward Rasmussen:
Gaussian Processes for time-marked time-series data. AISTATS 2012: 255-263 - [i2]Marc Peter Deisenroth, Ryan D. Turner, Marco F. Huber, Uwe D. Hanebeck, Carl Edward Rasmussen:
Robust Filtering and Smoothing with Gaussian Processes. CoRR abs/1203.4345 (2012) - 2011
- [c36]Joseph Hall, Carl Edward Rasmussen, Jan M. Maciejowski:
Reinforcement learning with reference tracking control in continuous state spaces. CDC/ECC 2011: 6019-6024 - [c35]Marc Peter Deisenroth, Carl Edward Rasmussen:
PILCO: A Model-Based and Data-Efficient Approach to Policy Search. ICML 2011: 465-472 - [c34]David Duvenaud, Hannes Nickisch, Carl Edward Rasmussen:
Additive Gaussian Processes. NIPS 2011: 226-234 - [c33]Andrew McHutchon, Carl Edward Rasmussen:
Gaussian Process Training with Input Noise. NIPS 2011: 1341-1349 - [c32]Marc Peter Deisenroth, Carl Edward Rasmussen, Dieter Fox:
Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. Robotics: Science and Systems 2011 - [i1]David Duvenaud, Hannes Nickisch, Carl Edward Rasmussen:
Additive Gaussian Processes. CoRR abs/1112.4394 (2011) - 2010
- [j10]Dilan Görür, Carl Edward Rasmussen:
Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution. J. Comput. Sci. Technol. 25(4): 653-664 (2010) - [j9]Miguel Lázaro-Gredilla, Joaquin Quiñonero Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal:
Sparse Spectrum Gaussian Process Regression. J. Mach. Learn. Res. 11: 1865-1881 (2010) - [j8]Carl Edward Rasmussen, Hannes Nickisch:
Gaussian Processes for Machine Learning (GPML) Toolbox. J. Mach. Learn. Res. 11: 3011-3015 (2010) - [c31]Hannes Nickisch, Carl Edward Rasmussen:
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models. DAGM-Symposium 2010: 272-282 - [c30]Yunus Saatci, Ryan D. Turner, Carl Edward Rasmussen:
Gaussian Process Change Point Models. ICML 2010: 927-934 - [c29]Ryan D. Turner, Marc Peter Deisenroth, Carl Edward Rasmussen:
State-Space Inference and Learning with Gaussian Processes. AISTATS 2010: 868-875
2000 – 2009
- 2009
- [j7]Marc Peter Deisenroth, Carl Edward Rasmussen, Jan Peters:
Gaussian process dynamic programming. Neurocomputing 72(7-9): 1508-1524 (2009) - [j6]Carl Edward Rasmussen, Bernard J. de la Cruz, Zoubin Ghahramani, David L. Wild:
Modeling and Visualizing Uncertainty in Gene Expression Clusters Using Dirichlet Process Mixtures. IEEE ACM Trans. Comput. Biol. Bioinform. 6(4): 615-628 (2009) - 2008
- [c28]Marc Peter Deisenroth, Jan Peters, Carl E. Rasmussen:
Approximate dynamic programming with Gaussian processes. ACC 2008: 4480-4485 - [c27]Marc Peter Deisenroth, Carl Edward Rasmussen, Jan Peters:
Model-Based Reinforcement Learning with Continuous States and Actions. ESANN 2008: 19-24 - [c26]Carl Edward Rasmussen, Marc Peter Deisenroth:
Probabilistic Inference for Fast Learning in Control. EWRL 2008: 229-242 - 2007
- [j5]Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Léon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander J. Smola, Pascal Vincent, Jason Weston, Robert C. Williamson:
The Need for Open Source Software in Machine Learning. J. Mach. Learn. Res. 8: 2443-2466 (2007) - 2006
- [b2]Carl Edward Rasmussen, Christopher K. I. Williams:
Gaussian processes for machine learning. Adaptive computation and machine learning, MIT Press 2006, ISBN 026218253X, pp. I-XVIII, 1-248 - [c25]Dilan Görür, Frank Jäkel, Carl Edward Rasmussen:
A choice model with infinitely many latent features. ICML 2006: 361-368 - 2005
- [j4]Malte Kuss, Carl Edward Rasmussen:
Assessing Approximate Inference for Binary Gaussian Process Classification. J. Mach. Learn. Res. 6: 1679-1704 (2005) - [j3]Joaquin Quiñonero Candela, Carl Edward Rasmussen:
A Unifying View of Sparse Approximate Gaussian Process Regression. J. Mach. Learn. Res. 6: 1939-1959 (2005) - [c24]Carl Edward Rasmussen, Joaquin Quiñonero Candela:
Healing the relevance vector machine through augmentation. ICML 2005: 689-696 - [c23]Joaquin Quiñonero Candela, Carl Edward Rasmussen, Fabian H. Sinz, Olivier Bousquet, Bernhard Schölkopf:
Evaluating Predictive Uncertainty Challenge. MLCW 2005: 1-27 - [c22]Malte Kuss, Carl Edward Rasmussen:
Assessing Approximations for Gaussian Process Classification. NIPS 2005: 699-706 - 2004
- [c21]Jus Kocijan, Roderick Murray-Smith, Carl E. Rasmussen, Agathe Girard:
Gaussian process model based predictive control. ACC 2004: 2214-2219 - [c20]Matthias O. Franz, Younghee Kwon, Carl Edward Rasmussen, Bernhard Schölkopf:
Semi-supervised Kernel Regression Using Whitened Function Classes. DAGM-Symposium 2004: 18-26 - [c19]Fabian H. Sinz, Joaquin Quiñonero Candela, Gökhan H. Bakir, Carl Edward Rasmussen, Matthias O. Franz:
Learning Depth from Stereo. DAGM-Symposium 2004: 245-252 - [c18]Dilan Görür, Carl Edward Rasmussen, Andreas S. Tolias, Fabian H. Sinz, Nikos K. Logothetis:
Modelling Spikes with Mixtures of Factor Analysers. DAGM-Symposium 2004: 391-398 - [c17]Ananya Dubey, Seungwoo Hwang, Claudia Rangel, Carl Edward Rasmussen, Zoubin Ghahramani, David L. Wild:
Clustering Protein Sequence and Structure Space with Infinite Gaussian Mixture Models. Pacific Symposium on Biocomputing 2004: 399-410 - [e1]Carl Edward Rasmussen, Heinrich H. Bülthoff, Bernhard Schölkopf, Martin A. Giese:
Pattern Recognition, 26th DAGM Symposium, August 30 - September 1, 2004, Tübingen, Germany, Proceedings. Lecture Notes in Computer Science 3175, Springer 2004, ISBN 3-540-22945-0 [contents] - 2003
- [c16]Carl Edward Rasmussen:
Gaussian Processes in Machine Learning. Advanced Lectures on Machine Learning 2003: 63-71 - [c15]Joaquin Quiñonero Candela, Carl Edward Rasmussen:
Analysis of Some Methods for Reduced Rank Gaussian Process Regression. European Summer School on Multi-AgentControl 2003: 98-127 - [c14]Joaquin Quiñonero Candela, Agathe Girard, Jan Larsen, Carl Edward Rasmussen:
Propagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting. ICASSP (2) 2003: 701-704 - [c13]Edward Lloyd Snelson, Carl Edward Rasmussen, Zoubin Ghahramani:
Warped Gaussian Processes. NIPS 2003: 337-344 - [c12]Carl Edward Rasmussen, Malte Kuss:
Gaussian Processes in Reinforcement Learning. NIPS 2003: 751-758 - [c11]Jan Eichhorn, Andreas S. Tolias, Alexander Zien, Malte Kuss, Carl Edward Rasmussen, Jason Weston, Nikos K. Logothetis, Bernhard Schölkopf:
Prediction on Spike Data Using Kernel Algorithms. NIPS 2003: 1367-1374 - 2002
- [c10]Carl Edward Rasmussen, Zoubin Ghahramani:
Bayesian Monte Carlo. NIPS 2002: 489-496 - [c9]Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, Roderick Murray-Smith:
Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting. NIPS 2002: 529-536 - [c8]E. Solak, Roderick Murray-Smith, William E. Leithead, Douglas J. Leith, Carl Edward Rasmussen:
Derivative Observations in Gaussian Process Models of Dynamic Systems. NIPS 2002: 1033-1040 - 2001
- [c7]Matthew J. Beal, Zoubin Ghahramani, Carl Edward Rasmussen:
The Infinite Hidden Markov Model. NIPS 2001: 577-584 - [c6]Carl Edward Rasmussen, Zoubin Ghahramani:
Infinite Mixtures of Gaussian Process Experts. NIPS 2001: 881-888 - 2000
- [c5]Carl Edward Rasmussen, Zoubin Ghahramani:
Occam's Razor. NIPS 2000: 294-300
1990 – 1999
- 1999
- [c4]Carl Edward Rasmussen:
The Infinite Gaussian Mixture Model. NIPS 1999: 554-560 - [c3]Pedro A. d. F. R. Højen-Sørensen, Lars Kai Hansen, Carl Edward Rasmussen:
Bayesian Modelling of fMRI lime Series. NIPS 1999: 754-760 - 1997
- [b1]Carl E. Rasmussen:
Evaluation of Gaussian processes and other methods for non-linear regression. University of Toronto, Canada, 1997 - 1995
- [c2]Christopher K. I. Williams, Carl Edward Rasmussen:
Gaussian Processes for Regression. NIPS 1995: 514-520 - [c1]Carl Edward Rasmussen:
A Practical Monte Carlo Implementation of Bayesian Learning. NIPS 1995: 598-604 - 1994
- [j2]Lars Kai Hansen, Carl Edward Rasmussen:
Pruning from Adaptive Regularization. Neural Comput. 6(6): 1223-1232 (1994) - 1993
- [j1]Carl Edward Rasmussen, David J. Willshaw:
Presynaptic and postsynaptic competition in models for the development of neuromuscular connections. Biol. Cybern. 68(5): 409-419 (1993)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-18 01:11 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint