default search action
Venkatesh Akella
Person information
- affiliation: University of California, Davis, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c55]Mark Hildebrand, Jason Lowe-Power, Venkatesh Akella:
CachedArrays: Optimizing Data Movement for Heterogeneous Memory Systems. IPDPS 2024: 545-555 - [i2]William Shaddix, Mahyar Samani, Marjan Fariborz, S. J. Ben Yoo, Jason Lowe-Power, Venkatesh Akella:
TEGRA - Scaling Up Terascale Graph Processing with Disaggregated Computing. CoRR abs/2404.03155 (2024) - 2023
- [c54]Venkatesh Akella, Marjan Fariborz, Mahyar Samani, S. J. Ben Yoo, Jason Lowe-Power:
Scalable Hardware Acceleration of Graph Processing with Photonic Interconnects. PSC 2023: 1-3 - [c53]Mark Hildebrand, Jason Lowe-Power, Venkatesh Akella:
Efficient Large Scale DLRM Implementation on Heterogeneous Memory Systems. ISC 2023: 42-61 - 2022
- [j30]Marjan Fariborz, Mahyar Samani, Terry O'Neill, Jason Lowe-Power, S. J. Ben Yoo, Venkatesh Akella:
A Model for Scalable and Balanced Accelerators for Graph Processing. IEEE Comput. Archit. Lett. 21(2): 149-152 (2022) - [c52]Ayaz Akram, Venkatesh Akella, Sean Peisert, Jason Lowe-Power:
SoK: Limitations of Confidential Computing via TEEs for High-Performance Compute Systems. SEED 2022: 121-132 - [c51]Marjan Fariborz, Mahyar Samani, Pouya Fotouhi, Roberto Proietti, Il-Min Yi, Venkatesh Akella, Jason Lowe-Power, Samuel Palermo, S. J. Ben Yoo:
LLM: Realizing Low-Latency Memory by Exploiting Embedded Silicon Photonics for Irregular Workloads. ISC 2022: 44-64 - 2021
- [c50]Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, Sean Peisert:
Performance Analysis of Scientific Computing Workloads on General Purpose TEEs. IPDPS 2021: 1066-1076 - [c49]Mark Hildebrand, Julian T. Angeles, Jason Lowe-Power, Venkatesh Akella:
A Case Against Hardware Managed DRAM Caches for NVRAM Based Systems. ISPASS 2021: 194-204 - [c48]Pouya Fotouhi, Marjan Fariborz, Roberto Proietti, Jason Lowe-Power, Venkatesh Akella, S. J. Ben Yoo:
HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads. ISC 2021: 176-194 - 2020
- [j29]Andrew Margenot, Terry O'Neill, Rolf Sommer, Venkatesh Akella:
Predicting soil permanganate oxidizable carbon (POXC) by coupling DRIFT spectroscopy and artificial neural networks (ANN). Comput. Electron. Agric. 168 (2020) - [j28]Maxim Shepovalov, Venkatesh Akella:
FPGA and GPU-based acceleration of ML workloads on Amazon cloud - A case study using gradient boosted decision tree library. Integr. 70: 1-9 (2020) - [c47]Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, Venkatesh Akella:
AutoTM: Automatic Tensor Movement in Heterogeneous Memory Systems using Integer Linear Programming. ASPLOS 2020: 875-890 - [c46]Kramer Straube, Jason Lowe-Power, Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
HCAPP: Scalable Power Control for Heterogeneous 2.5D Integrated Systems. ICPP 2020: 60:1-60:11 - [i1]Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-Power, Sean Peisert:
Performance Analysis of Scientific Computing Workloads on Trusted Execution Environments. CoRR abs/2010.13216 (2020)
2010 – 2019
- 2019
- [j27]Sree Balaji Girisankar, Mona Nasseri, Jennifer Priscilla, Shu Lin, Venkatesh Akella:
Multiplier-Free Implementation of Galois Field Fourier Transform on a FPGA. IEEE Trans. Circuits Syst. II Express Briefs 66-II(11): 1815-1819 (2019) - 2018
- [c45]Sandeep Rasoori, Venkatesh Akella:
Scalable Hardware Accelerator for Mini-Batch Gradient Descent. ACM Great Lakes Symposium on VLSI 2018: 159-164 - [c44]Kramer Straube, Jason Lowe-Power, Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
Improving Provisioned Power Efficiency in HPC Systems with GPU-CAPP. HiPC 2018: 112-122 - [c43]Jason Lowe-Power, Venkatesh Akella, Matthew K. Farrens, Samuel T. King, Christopher J. Nitta:
A case for exposing extra-architectural state in the ISA: position paper. HASP@ISCA 2018: 8:1-8:6 - 2017
- [c42]Paolo Grani, Roberto Proietti, Venkatesh Akella, S. J. Ben Yoo:
Design and Evaluation of AWGR-Based Photonic NoC Architectures for 2.5D Integrated High Performance Computing Systems. HPCA 2017: 289-300 - [c41]Kramer Straube, Christopher Nitta, Raj Amirtharajah, Matthew K. Farrens, Venkatesh Akella:
Improving Execution Time of Parallel Programs on Large Scale Chip Multiprocessors with Constant Average Power Processing. ICCD 2017: 649-652 - 2016
- [c40]Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, Soheil Ghiasi:
Design space exploration of FPGA-based Deep Convolutional Neural Networks. ASP-DAC 2016: 575-580 - [c39]Huan Zhang, Cho-Jui Hsieh, Venkatesh Akella:
HogWild++: A New Mechanism for Decentralized Asynchronous Stochastic Gradient Descent. ICDM 2016: 629-638 - [c38]Paolo Grani, Roberto Proietti, Venkatesh Akella, S. J. Ben Yoo:
Photonic Interconnects for Interposer-based 2.5D/3D Integrated Systems on a Chip. MEMSYS 2016: 377-386 - 2014
- [j26]Frank Maker III, Rajeevan Amirtharajah, Venkatesh Akella:
Runtime Adaptation of Applications Using Design Of Experiments: A Smartphone-Based Case Study. IEEE Embed. Syst. Lett. 6(2): 25-28 (2014) - [j25]Kevin Macdonald, Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
PDG_GEN: A Methodology for Fast and Accurate Simulation of On-Chip Networks. IEEE Trans. Computers 63(3): 650-663 (2014) - [j24]Paul Congdon, Prasant Mohapatra, Matthew K. Farrens, Venkatesh Akella:
Simultaneously Reducing Latency and Power Consumption in OpenFlow Switches. IEEE/ACM Trans. Netw. 22(3): 1007-1020 (2014) - 2013
- [j23]Frank Maker III, Rajeevan Amirtharajah, Venkatesh Akella:
MELOADES: Methodology for long-term online adaptation of embedded software for heterogeneous devices. J. Syst. Archit. 59(8): 643-655 (2013) - [c37]Frank Maker III, Rajeevan Amirtharajah, Venkatesh Akella:
Update rate tradeoffs for improving online power modeling in smartphones. ISLPED 2013: 114-119 - [c36]Roberto Proietti, Christopher J. Nitta, Yawei Yin, Venkatesh Akella, S. J. Ben Yoo:
Scalability and performance of a distributed AWGR-based all-optical token interconnect architecture. OFC/NFOEC 2013: 1-3 - 2012
- [j22]Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
DCOF - An Arbitration Free Directly Connected Optical Fabric. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(2): 169-182 (2012) - [j21]Xiaohui Ye, S. J. Ben Yoo, Venkatesh Akella:
AWGR-Based Optical Topologies for Scalable and Efficient Global Communications in Large-Scale Multi-Processor Systems. JOCN 4(9): 651-662 (2012) - [j20]Xiaoheng Chen, Shu Lin, Venkatesh Akella:
Efficient Configurable Decoder Architecture for Nonbinary Quasi-Cyclic LDPC Codes. IEEE Trans. Circuits Syst. I Regul. Pap. 59-I(1): 188-197 (2012) - [c35]Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
DCAF - A Directly Connected Arbitration-Free Photonic Crossbar for Energy-Efficient High Performance Computing. IPDPS 2012: 1144-1155 - 2011
- [j19]Xiaohui Ye, Roberto Proietti, Yawei Yin, S. J. Ben Yoo, Venkatesh Akella:
Buffering and Flow Control in Optical Switches for High Performance Computing. JOCN 3(8): A59-A72 (2011) - [j18]Xiaoheng Chen, Jingyu Kang, Shu Lin, Venkatesh Akella:
Memory System Optimization for FPGA-Based Implementation of Quasi-Cyclic LDPC Codes Decoders. IEEE Trans. Circuits Syst. I Regul. Pap. 58-I(1): 98-111 (2011) - [j17]Xiaoheng Chen, Jingyu Kang, Shu Lin, Venkatesh Akella:
Hardware Implementation of a Backtracking-Based Reconfigurable Decoder for Lowering the Error Floor of Quasi-Cyclic LDPC Codes. IEEE Trans. Circuits Syst. I Regul. Pap. 58-I(12): 2931-2943 (2011) - [j16]Xiaoheng Chen, Venkatesh Akella:
Exploiting data-level parallelism for energy-efficient implementation of LDPC decoders and DCT on an FPGA. ACM Trans. Reconfigurable Technol. Syst. 4(4): 37:1-37:17 (2011) - [c34]Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
Addressing system-level trimming issues in on-chip nanophotonic networks. HPCA 2011: 122-131 - [c33]Christopher Nitta, Matthew K. Farrens, Venkatesh Akella:
Resilient microring resonator based photonic networks. MICRO 2011: 95-104 - [c32]Christopher Nitta, Kevin Macdonald, Matthew K. Farrens, Venkatesh Akella:
Inferring packet dependencies to improve trace based simulation of on-chip networks. NOCS 2011: 153-160 - 2010
- [j15]Eric Jung, Frank Maker III, Tang Lung Cheung, Xin Liu, Venkatesh Akella:
Markov decision process (MDP) framework for software power optimization using call profiles on mobile phones. Des. Autom. Embed. Syst. 14(1): 131-159 (2010) - [j14]Haijun Yang, Zhong Pan, Venkatesh Akella, Chen-Nee Chuah, S. J. Ben Yoo:
Optical Router Control Architecture and Contention Resolution Algorithms Capable of Asynchronous, Variable-Length Packet Switching. JOCN 2(9): 745-759 (2010) - [j13]Xiaoheng Chen, Shu Lin, Venkatesh Akella:
QSN - A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders. IEEE Trans. Circuits Syst. II Express Briefs 57-II(10): 782-786 (2010) - [c31]Xiaohui Ye, Yawei Yin, S. J. Ben Yoo, Paul Vincent Mejia, Roberto Proietti, Venkatesh Akella:
DOS: a scalable optical switch for datacenters. ANCS 2010: 24 - [c30]Paul Vincent Mejia, Rajeevan Amirtharajah, Matthew K. Farrens, Venkatesh Akella:
Performance Evaluation of a Multicore System with Optically Connected Memory Modules. NOCS 2010: 215-222
2000 – 2009
- 2009
- [c29]Xiaoheng Chen, Qin Huang, Shu Lin, Venkatesh Akella:
FPGA-based low-complexity high-throughput tri-mode decoder for quasi-cyclic LDPC codes. Allerton 2009: 600-606 - [c28]Xiaoheng Chen, Jingyu Kang, Shu Lin, Venkatesh Akella:
Accelerating FPGA-based emulation of quasi-cyclic LDPC codes with vector processing. DATE 2009: 1530-1535 - [c27]Tang Lung Cheung, Kari Okamoto, Frank Maker III, Xin Liu, Venkatesh Akella:
Markov decision process (MDP) framework for optimizing software on mobile phones. EMSOFT 2009: 11-20 - 2008
- [c26]John Y. Oliver, Rajeevan Amirtharajah, Venkatesh Akella, Frederic T. Chong:
Credit-based dynamic reliability management using online wearout detection. Conf. Computing Frontiers 2008: 139-148 - [c25]Amit Hadke, Tony Benavides, S. J. Ben Yoo, Rajeevan Amirtharajah, Venkatesh Akella:
OCDIMM: Scaling the DRAM Memory Wall Using WDM Based Optical Interconnects. Hot Interconnects 2008: 57-63 - [c24]Amit Hadke, Tony Benavides, Rajeevan Amirtharajah, Matthew K. Farrens, Venkatesh Akella:
Design and evaluation of an optical CPU-DRAM interconnect. ICCD 2008: 492-497 - 2007
- [j12]John Y. Oliver, Rajeevan Amirtharajah, Venkatesh Akella, Roland Geyer, Frederic T. Chong:
Life Cycle Aware Computing: Reusing Silicon Technology. Computer 40(12): 56-61 (2007) - [j11]John Y. Oliver, Diana Franklin, Frederic T. Chong, Venkatesh Akella:
Using Application Bisection Bandwidth to Guide Tile Size Selection for the Synchroscalar Tile-Based Architecture. Trans. High Perform. Embed. Archit. Compil. 1: 259-278 (2007) - 2006
- [j10]John Y. Oliver, Ravishankar Rao, Diana Franklin, Frederic T. Chong, Venkatesh Akella:
Synchroscalar: Evaluation of an embedded, multi-core architecture for media applications. J. Embed. Comput. 2(2): 157-166 (2006) - [c23]John Y. Oliver, Ravishankar Rao, Michael Brown, Jennifer Mankin, Diana Franklin, Frederic T. Chong, Venkatesh Akella:
Tile size selection for low-power tile-based architectures. Conf. Computing Frontiers 2006: 83-94 - [c22]Ravishankar Rao, Justin Wenck, Diana Franklin, Rajeevan Amirtharajah, Venkatesh Akella:
Segmented Bitline Cache: Exploiting Non-uniform Memory Access Patterns. HiPC 2006: 123-134 - 2005
- [c21]Gouri Landge, Mihaela van der Schaar, Venkatesh Akella:
Generic modeling of complexity for motion-compensated wavelet video decoders. Electronic Imaging: Image and Video Communications and Processing 2005 - [c20]Gouri Landge, Mihaela van der Schaar, Venkatesh Akella:
Complexity metric driven energy optimization framework for implementing MPEG-21 scalable video decoders. ICASSP (2) 2005: 1141-1144 - [c19]Haijun Yang, Venkatesh Akella, Chen-Nee Chuah, S. J. Ben Yoo:
Scheduling optical packets in wavelength, time, and space domains for all-optical packet switching routers. ICC 2005: 1836-1842 - [c18]Venkatesh Akella, Mihaela van der Schaar, Wen-Fu Kao:
Proactive Energy Optimization Algorithms for Wavelet-Based Video Codecs on Power-Aware Processors. ICME 2005: 566-569 - 2004
- [c17]Mihaela van der Schaar, Deepak S. Turaga, Venkatesh Akella:
Rate-distortion-complexity adaptive video compression and streaming. ICIP 2004: 2051-2054 - [c16]John Y. Oliver, Ravishankar Rao, Paul Sultana, Jedidiah R. Crandall, Erik Czernikowski, Leslie W. Jones IV, Diana Franklin, Venkatesh Akella, Frederic T. Chong:
Synchroscalar: A Multiple Clock Domain, Power-Aware, Tile-Based Embedded Processor. ISCA 2004: 150-161 - [c15]John Y. Oliver, Venkatesh Akella, Frederic T. Chong:
Efficient orchestration of sub-word parallelism in media processors. SPAA 2004: 225-234 - 2003
- [j9]S. J. Ben Yoo, Fei Xue, Yash Bansal, Julie Taylor, Zhong Pan, Jing Cao, Min-Yong Jeon, Tony Nady, Gary Goncher, Kirk Boyer, Kari Okamoto, Shin Kamei, Venkatesh Akella:
High-performance optical-label switching packet routers and smart edge routers for the next-generation Internet. IEEE J. Sel. Areas Commun. 21(7): 1041-1051 (2003) - [c14]John Y. Oliver, Venkatesh Akella:
Improving DSP Performance with a Small Amount of Field Programmable Logic. FPL 2003: 520-532 - [c13]John Y. Oliver, Ravishankar Rao, Paul Sultana, Jedidiah R. Crandall, Erik Czernikowski, Leslie W. Jones IV, Dean Copsey, Diana Keen, Venkatesh Akella, Frederic T. Chong:
Synchroscalar: Initial Lessons in Power-Aware Design of a Tile-Based Embedded Architecture. PACS 2003: 73-85 - 2001
- [c12]Tony Werner, Venkatesh Akella:
An Asynchronous Superscalar Architecture for Exploiting Instruction-Level Parallelism. ASYNC 2001: 140-151
1990 – 1999
- 1999
- [c11]Nithya Raghavan, Venkatesh Akella, Smita Bakshi:
Automatic Insertion of Gated Clocks at Register Transfer Level. VLSI Design 1999: 48-54 - 1998
- [j8]Venkatesh Akella, Nitin H. Vaidya, G. Robert Redinbo:
Asynchronous Comparison-Based Decoders for Delay-Insensitive Codes. IEEE Trans. Computers 47(7): 802-811 (1998) - [j7]Dave Johnson, Venkatesh Akella, Bret Stott:
Micropipelined asynchronous discrete cosine transform (DCT/IDCT) processor. IEEE Trans. Very Large Scale Integr. Syst. 6(4): 731-740 (1998) - 1997
- [j6]Tony Werner, Venkatesh Akella:
Asynchronous Processor Survey. Computer 30(11): 67-76 (1997) - 1996
- [c10]Tony Werner, Venkatesh Akella:
Counterflow pipeline based dynamic instruction scheduling. ASYNC 1996: 69-79 - [c9]Venkatesh Akella, Nitin H. Vaidya, G. Robert Redinbo:
Limitations of VLSI Implementation of Delay-Insensitive Codes. FTCS 1996: 208-217 - 1995
- [c8]Bret Stott, Dave Johnson, Venkatesh Akella:
Asynchronous 2-D discrete cosine transform core processor. ICCD 1995: 380-385 - 1994
- [j5]Venkatesh Akella, Ganesh Gopalakrishnan:
CFSIM: A Concurrent Compiled Code Functional Simulator for hopCP. Int. J. Comput. Simul. 4(4): 375-394 (1994) - [j4]Venkatesh Akella, Ganesh Gopalakrishnan:
Specification and Validation of Control-Intensive IC's in hopCP. IEEE Trans. Software Eng. 20(6): 405-423 (1994) - [j3]Ganesh Gopalakrishnan, Venkatesh Akella:
High-level optimizations in compiling process descriptions to asynchronous circuits. J. VLSI Signal Process. 7(1-2): 33-45 (1994) - [c7]Prabhakar Kudva, Venkatesh Akella:
A technique for estimating power in asynchronous circuits. ASYNC 1994: 166-175 - [c6]Prabhakar Kudva, Ganesh Gopalakrishnan, Erik Brunvand, Venkatesh Akella:
Performance Analysis and Optimization of Asynchronous Circuits. ICCD 1994: 221-224 - [c5]Prabhakar Kudva, Venkatesh Akella:
Testing two-phase transition signaling based self-timed circuits in a synthesis environment. HLSS 1994: 104-111 - 1993
- [c4]Ganesh Gopalakrishnan, Venkatesh Akella:
A transformational approach to asynchronous high-level synthesis. VLSI 1993: 201-210 - 1992
- [j2]Ganesh Gopalakrishnan, Venkatesh Akella:
VLSI asynchronous systems: specification and synthesis. Microprocess. Microsystems 16(10): 517-527 (1992) - [c3]Venkatesh Akella, Ganesh Gopalakrishnan:
SHILPA: a high-level synthesis system for self-timed circuits. ICCAD 1992: 587-591 - [c2]Venkatesh Akella, Ganesh Gopalakrishnan:
From Process-Oriented Functional Specifications to Efficient Asynchronous Circuits. VLSI Design 1992: 324-325
1980 – 1989
- 1989
- [j1]Ganesh Gopalakrishnan, Richard M. Fujimoto, Venkatesh Akella, Narayana Mani:
HOP: A process model for synchronous hardware; semantics and experiments in process composition. Integr. 8(3): 209-247 (1989) - [c1]Ganesh Gopalakrishnan, Narayana Mani, Venkatesh Akella:
Parallel Composition of Lockstep Synchronous Processes for Hardware Validation: Divide-and-Conquer Composition. Automatic Verification Methods for Finite State Systems 1989: 374-382
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:06 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint