dbo:abstract
|
- In the mathematical theory of metric spaces, ε-nets, ε-packings, ε-coverings, uniformly discrete sets, relatively dense sets, and Delone sets (named after Boris Delone) are several closely related definitions of well-spaced sets of points, and the packing radius and covering radius of these sets measure how well-spaced they are. These sets have applications in coding theory, approximation algorithms, and the theory of quasicrystals. (en)
- En la teoría matemática de espacios métricos, ε-redes, ε-empaquetados, ε-coberturas, conjuntos uniformemente discretos, conjuntos relativamente densos, y conjuntos de Delaunay (nombrados así en memoria del matemático ruso Borís Delaunay; también son denominados conjuntos de Delone) son muchas veces definiciones estrechamente relacionadas de conjuntos de puntos bien-ordenados, y la relación entre el radio de empaquetado y el radio de recubrimiento mide en qué grado están bien-ordenados. Estos conjuntos tienen aplicaciones en teoría de códigos, en algoritmos de aproximación, y en la teoría de cuasicristales. (es)
- В теории метрических пространств, -сети, -упаковки, -покрытия, равномерно дискретные множества, относительно плотные множества и множества Делоне (названы именем советского математика Бориса Николаевича Делоне) являются тесно связанными определениями множеств точек, а радиус упаковки и радиус покрытия этих множеств определяют, насколько хорошо точки этих множеств разнесены. Эти множества имеют приложения в теории кодирования, аппроксимационных алгоритмах и теории квазикристаллов. (ru)
- У теорії метричних просторів, -мережі, -пакування, -покриття, рівномірно дискретні множини, відносно щільні множини і множини Делоне (названі ім'ям радянського математика Бориса Миколайовича Делоне) є тісно пов'язаними визначеннями множин точок, а радіус пакування і радіус покриття цих множин визначають, наскільки добре точки цих множин рознесені. Ці множини застосовують у теорії кодування, апроксимаційних алгоритмах і теорії квазікристалів. (uk)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 10328 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In the mathematical theory of metric spaces, ε-nets, ε-packings, ε-coverings, uniformly discrete sets, relatively dense sets, and Delone sets (named after Boris Delone) are several closely related definitions of well-spaced sets of points, and the packing radius and covering radius of these sets measure how well-spaced they are. These sets have applications in coding theory, approximation algorithms, and the theory of quasicrystals. (en)
- En la teoría matemática de espacios métricos, ε-redes, ε-empaquetados, ε-coberturas, conjuntos uniformemente discretos, conjuntos relativamente densos, y conjuntos de Delaunay (nombrados así en memoria del matemático ruso Borís Delaunay; también son denominados conjuntos de Delone) son muchas veces definiciones estrechamente relacionadas de conjuntos de puntos bien-ordenados, y la relación entre el radio de empaquetado y el radio de recubrimiento mide en qué grado están bien-ordenados. Estos conjuntos tienen aplicaciones en teoría de códigos, en algoritmos de aproximación, y en la teoría de cuasicristales. (es)
- В теории метрических пространств, -сети, -упаковки, -покрытия, равномерно дискретные множества, относительно плотные множества и множества Делоне (названы именем советского математика Бориса Николаевича Делоне) являются тесно связанными определениями множеств точек, а радиус упаковки и радиус покрытия этих множеств определяют, насколько хорошо точки этих множеств разнесены. Эти множества имеют приложения в теории кодирования, аппроксимационных алгоритмах и теории квазикристаллов. (ru)
- У теорії метричних просторів, -мережі, -пакування, -покриття, рівномірно дискретні множини, відносно щільні множини і множини Делоне (названі ім'ям радянського математика Бориса Миколайовича Делоне) є тісно пов'язаними визначеннями множин точок, а радіус пакування і радіус покриття цих множин визначають, наскільки добре точки цих множин рознесені. Ці множини застосовують у теорії кодування, апроксимаційних алгоритмах і теорії квазікристалів. (uk)
|
rdfs:label
|
- Conjunto de Delaunay (es)
- Delone set (en)
- Множество Делоне (ru)
- Множина Делоне (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |