dbo:abstract
|
- La transformació de Lorentz (Hendrik Lorentz, 1853 - 1928) estableix una de les bases matemàtiques de la teoria de la relativitat especial que havia estat introduïda per a resoldre certes inconsistències entre l'electromagnetisme i la mecànica clàssica. La transformació de Lorentz permet calcular com varien les propietats d'un sistema físic entre diferents observadors inercials i actualitza la transformació de Galileu utilitzada en física fins aleshores. La transformació de Lorentz permet preservar el valor de la velocitat de la llum constant per a tots els observadors inercials. Relació entre les coordenades d'un esdeveniment respecte al sistema O', en moviment uniforme a velocitat v al llarg de l'eix x del sistema O i les coordenades del mateix esdeveniment respecte al sistema O : siguin t i t’ els temps relatius transcorreguts per a cada sistema de coordenades, on: , s'anomena factor de Lorentz i és la velocitat de la llum en el buit. La transformació de Lorentz requereix per a alguns sistemes que l'origen de coordenades dels dos sistemes de referència sigui el mateix per a t=0. La generalització matemàtica de la transformació de Lorentz sense aquesta restricció s'anomena . (ca)
- تحويل لورينتز (بالإنجليزية: Lorenz transformation) عبارة عن مجموعة تحويلات تستخدم لتحويل الإحداثيات المكانية والزمانية (أو بشكل عام أي متجه رباعي الأبعاد) في إطار مرجعي عطالي س إلى الإحداثيات الأربعة في إطار مرجعي آخر ع. تعتمد تحويلات لورينتز على وجود سرعة قصوى في الكون لا يمكن للأجسام تعديتها، ألا وهي سرعة الضوء c في الفراغ. فاذا حصل الحدث في الإطار المرجعي العطالي (مختبر) س بالإحداثيات وشوهد الحدث نفسه من «المختبر» ع بالإحداثيات فيحتم مبدأ النسبية (تساوي القوانين الطبيعية في س وع) مع اعتبار سرعة الضوء c هي أقصي سرعة في الكون للأجسام ولانتقال الطاقة، فتوصل لورينتز إلى التحويلات الآتية: حيث: و و هي إحداثيات المكان، إحداثي الزمن، سرعة الجسم سرعة الضوء في الفراغ. و يدعى معامل لورينتز كما توجد معادلات تحويل عكسية تسمى معادلات لورينتز العكسية. (ar)
- Lorentzova transformace je soustava rovnic umožňující pomocí souřadnic x, y, z, t nějaké události U v inerciální vztažné soustavě S vyjádřit souřadnice x' , y' , z' , t' téže události v jiné inerciální vztažné soustavě S', která se vzhledem k původní soustavě S pohybuje rychlostí v. Podle týchž pravidel jako události se transformují i všechny ostatní čtyřvektory. Rovnici prvně užil roku 1887. Kontrakce délek postuloval prvně George Francis FitzGerald roku 1889. Obecněji je pak užil nizozemský fyzik Hendrik Antoon Lorentz. Ukázalo se, že základní rovnice elektromagnetismu jsou stejné ve všech vztažných soustavách, které se vůči sobě pohybují neměnnou rychlostí, právě při použití těchto transformačních vztahů. (cs)
- Οι Μετασχηματισμοί Λόρεντς, οι οποίοι ονομάστηκαν προς τιμήν του Ολλανδού φυσικού και μαθηματικού Χέντρικ Λόρεντς (Hendrik Antoon Lorentz) (1853-1928) και αποτελούν τη βάση της Ειδικής θεωρίας της Σχετικότητας, η οποία εισήχθη σε μια προσπάθεια να αρθούν οι αντιφάσεις ανάμεσα στις θεωρίες του ηλεκτρομαγνητισμού και της Κλασικής Μηχανικής. (el)
- En fiziko, la lorenca transformo (aŭ transformo de Lorentz), estas en speciala teorio de relativeco, kiu konvertas dimensiojn de spaco kaj tempo inter du malsamaj rigardantoj, kie unu rigardanto estas en konstanta moviĝo kun respekto al la alia. La respektiva en ne-relativisma okazo estas x'=x-vt, priskribanta ke la fonto de unu rigardanta koordinatsistemo moviĝas respektive al la alia, je rapido v laŭ la x-akso de ĉiu kadro. Laŭ speciala teorio de relativeco, ĉi tiu estas nur bona proksimumado je multa pli malgrandaj rapidoj ol la lumrapido, kaj ĝenerale la rezulto estas ne nur ŝovo de la x koordinatoj. Ankaŭ longoj kaj tempoj estas ŝanĝitaj. Se spaco estas , do la lorenca transformo devas esti lineara transformo. Ankaŭ, pro tio ke relativeco postulas ke la lumrapido estas la sama por ĉiuj rigardantoj, ĝi devas konservi la spactempan intervalon inter ĉiuj du eventoj en spaco de Minkowski. La lorencaj transformoj priskribas nur la transformoj en kiu la evento je spaca koordinati x=0 kaj tempo t=0 restas fiksita, tiel ili povas esti konsiderata kiel turnado de spaco de Minkowski. La pli ĝenerala aro de transformoj kiuj inkluzivas ankaŭ ŝovojn estas la grupo de Poincaré. Estu du rigardantoj O kaj Q, ĉiu uzanta siajn karteziajn koordinatojn por mezuri spacajn kaj tempajn intervalojn. O uzas koordinatojn (t, x, y, z) kaj Q uzas koordinatojn (t', x', y', z'). Estu la koordinatsistemoj orientitaj tiel ke la x-akso kaj la x'-akso interkovriĝas, la y-akso estas paralela al la y'-akso, la z-akso estas paralela al la z'-akso. La relativa rapido inter la du rigardantoj estas v laŭ la komuna x-akso. La fontoj de ambaŭ koordinatsistemoj estu la sama. Se ĉi ĉiuj kondiĉoj veras, la koordinatsistemoj estas en la norma konfiguro. La lorenca transformo por norma konfiguro estas: kie estas la . Skalara invarianta sub lorencaj transformoj estas . La transformo konservas ekvaciojn de Maxwell. (eo)
- Die Lorentz-Transformationen, nach Hendrik Antoon Lorentz, sind eine Klasse von Koordinatentransformationen, die in der Physik Beschreibungen von Phänomenen in verschiedenen Bezugssystemen ineinander überführen. Sie verbinden in einer vierdimensionalen Raumzeit die Zeit- und Ortskoordinaten, mit denen verschiedene Beobachter angeben, wann und wo Ereignisse stattfinden. Die Lorentz-Transformationen bilden daher die Grundlage der Speziellen Relativitätstheorie von Albert Einstein. Das Äquivalent zu den Lorentz-Transformationen im dreidimensionalen euklidischen Raum sind die Galilei-Transformationen; genauso wie diese Abstände und Winkel erhalten, erhalten die Lorentz-Transformationen die Abstände in der nichteuklidischen Raumzeit (Minkowskiraum). Winkel werden im Minkowskiraum nicht erhalten, da der Minkowskiraum kein normierter Raum ist. Die Lorentz-Transformationen bilden eine Gruppe im mathematischen Sinn, die Lorentz-Gruppe:
* Die Hintereinanderausführung von Lorentz-Transformationen kann als eine einzige Lorentz-Transformation beschrieben werden.
* Die triviale Transformation von einem Bezugssystem in dasselbe ist ebenfalls eine Lorentz-Transformation.
* Zu jeder Lorentz-Transformation existiert eine inverse Transformation, die wieder in das ursprüngliche Bezugssystem zurück transformiert. Unterklassen der Lorentz-Transformationen sind die diskreten Transformationen der Raumspiegelung, also der Inversion aller räumlichen Koordinaten, sowie der Zeitumkehr, also die Umkehr des Zeitpfeils, und die kontinuierlichen Transformationen der endlichen Drehung sowie der speziellen Lorentz-Transformationen oder Lorentz-Boosts. Kontinuierliche Drehbewegungen der Koordinatensysteme gehören nicht zu den Lorentz-Transformationen. Teilweise werden auch nur die speziellen Lorentz-Transformationen verkürzend als Lorentz-Transformationen betitelt. (de)
- Las transformaciones de Lorentz, dentro de la teoría de la relatividad especial, son un conjunto de relaciones que dan cuenta de cómo se relacionan las medidas de una magnitud física obtenidas por dos observadores diferentes. Estas relaciones establecieron la base matemática de la teoría de la relatividad espacial de Einstein, ya que las transformaciones de Lorentz precisan el tipo de geometría del espacio-tiempo requeridas por la teoría de Einstein. Matemáticamente el conjunto de todas las transformaciones de Lorentz forman el grupo de Lorentz. (es)
- Fisikan, Lorentz-en transformazioa koordenatu sistema batetik honekiko abiadura konstantez higitzen ari den beste koordenatu sistema baterako sei parametrodun linealen familia da. Honi dagokion alderantzizko transformazioa abiadura honen negatiboaz parametrizatzen da. Transformazioa garatu zuen Hendrik Lorentz Herbehereetako fisikariaren omenez du izena. (eu)
- In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant representing a velocity confined to the x-direction, is expressed as where (t, x, y, z) and (t′, x′, y′, z′) are the coordinates of an event in two frames with the origins coinciding at t=t′=0, where the primed frame is seen from the unprimed frame as moving with speed v along the x-axis, where c is the speed of light, and is the Lorentz factor. When speed v is much smaller than c, the Lorentz factor is negligibly different from 1, but as v approaches c, grows without bound. The value of v must be smaller than c for the transformation to make sense. Expressing the speed as an equivalent form of the transformation is Frames of reference can be divided into two groups: inertial (relative motion with constant velocity) and non-inertial (accelerating, moving in curved paths, rotational motion with constant angular velocity, etc.). The term "Lorentz transformations" only refers to transformations between inertial frames, usually in the context of special relativity. In each reference frame, an observer can use a local coordinate system (usually Cartesian coordinates in this context) to measure lengths, and a clock to measure time intervals. An event is something that happens at a point in space at an instant of time, or more formally a point in spacetime. The transformations connect the space and time coordinates of an event as measured by an observer in each frame. They supersede the Galilean transformation of Newtonian physics, which assumes an absolute space and time (see Galilean relativity). The Galilean transformation is a good approximation only at relative speeds much less than the speed of light. Lorentz transformations have a number of unintuitive features that do not appear in Galilean transformations. For example, they reflect the fact that observers moving at different velocities may measure different distances, elapsed times, and even different orderings of events, but always such that the speed of light is the same in all inertial reference frames. The invariance of light speed is one of the postulates of special relativity. Historically, the transformations were the result of attempts by Lorentz and others to explain how the speed of light was observed to be independent of the reference frame, and to understand the symmetries of the laws of electromagnetism. The Lorentz transformation is in accordance with Albert Einstein's special relativity, but was derived first. The Lorentz transformation is a linear transformation. It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost. In Minkowski space—the mathematical model of spacetime in special relativity—the Lorentz transformations preserve the spacetime interval between any two events. This property is the defining property of a Lorentz transformation. They describe only the transformations in which the spacetime event at the origin is left fixed. They can be considered as a hyperbolic rotation of Minkowski space. The more general set of transformations that also includes translations is known as the Poincaré group. (en)
- Les transformations de Lorentz sont des transformations linéaires des coordonnées d'un point de l'espace-temps de Minkowski à quatre dimensions.En relativité restreinte, elles correspondent aux lois de changement de référentiel galiléen pour lesquelles les équations de la physique sont préservées, et pour lesquelles la vitesse de la lumière demeure identique dans tous les référentiels galiléens. Elles sont parfois considérées comme l'équivalent relativiste des transformations de Galilée de la mécanique classique. La forme la plus courante est : Où (t, x, y, z) et (t′, x′, y′, z′) représentent les coordonnées d'un événement dans deux référentiels inertiels dont la vitesse relative est parallèle à l'axe des , est la vitesse de la lumière, et le facteur de Lorentz est . Le terme « transformations de Lorentz » peut faire référence aux changements de coordonnées présentés ci-dessus, parfois nommés transformations de Lorentz spéciales ou boost de Lorentz, ou bien à un ensemble plus vaste nommé groupe de Lorentz. Ce groupe est constitué de l'ensemble des transformations linéaires compatibles avec les postulats de la relativité restreinte, c'est-à-dire celles qui laissent invariant la pseudo-norme de l'espace de Minkowski. Le groupe de Lorentz inclut non seulement les boosts de Lorentz pour toute direction arbitraire de l'espace, mais également les pivotements du repère d'espace, nommés rotations statiques de l'espace. Dans le cadre des théories quantiques relativistes et de la description des particules élémentaires, les transformations qui renversent le sens du temps et l'orientation du repère d'espace sont également admises, bien qu'elles puissent sembler dénuées de sens en relativité restreinte.Le groupe de Lorentz est lui-même un sous-groupe du groupe de Poincaré qui étend la définition précédente aux transformations affines, sans se limiter aux transformations linéaires. Le groupe de Poincaré permet ainsi de représenter l'ensemble des changements de repère autorisés en relativité restreinte, y compris ceux impliquant un décalage de l'origine du repère d'espace-temps. L'éponymecol. 11_2-0" class="reference"> des transformations est Hendrik Lorentz (1853-1928). Elle sont ainsi désignées à la suite de Henri Poincaré (1854-1912)n. historique_3-0" class="reference">. Dans l'introduction à la publication « Deux Mémoires de Henri Poincaré sur la physique mathématique », Acta Matematica, vol. 38, p. 293-308, en 1921, Hendrik Lorentz précise que c'est pour faire en sorte que les équations de Maxwell s'écrivent à l'identique dans tout référentiel galiléen que Henri Poincaré a introduit mathématiquement cette loi, en la baptisant du nom de Lorentz. Ce dernier en avait donné une version qu'il a, plus tard, jugée imparfaite. (fr)
- Dalam fisika, transformasi Lorentz adalah seperangkat transformasi linear satu-parameter dari sistem koordinat suatu kerangka acuan dalam ruang waktu ke kerangka yang lain yang bergerak dengan kecepatan yang konstan (parameternya) relatif terhadap kerangka yang awal. Transformasi inversnya berbentuk serupa dengan parameter negatif dari kecepatan tersebut. Nama transformasi ini dinamai dari fisikawan Belanda Hendrik Lorentz. Bentuk paling umum dari transformasi ini, dengan parameter sebuah konstanta real melambangkan kecepatan sejajar sumbu-x, dituliskan sebagai dengan (t, x, y, z) dan (t′, x′, y′, z′) adalah koordinat suatu kejadian dalam dua kerangka, di mana salah satu kerangka diamati sedang bergerak dengan kecepatan v sejajar sumbu-x menurut kerangka yang lainnya, c adalah laju cahaya, dan adalah faktor Lorentz. Ketika kecepatan v jauh lebih kecil daripada c, faktor Lorentz bisa dianggap sama dengan 1, tetapi ketika nilai v mendekati c, nilai naik tanpa batas. Nilai v harus lebih kecil daripada c agar transformasinya masuk akal. Jika kecepatan dilambangkan sebagai bentuk ekuivalen dari transformasinya adalah Kerangka acuan bisa dibagi menjadi dua jenis: inersia (bergerak relatif dengan kecepatan konstan) dan non-inersia (mengalami percepatan, bergerak melengkung, gerak rotasi dengan kecepatan sudut konstan, dsb.). Istilah "transformasi Lorentz" hanya mengacu pada transformasi antar kerangka inersia, biasanya dalam konteks relativitas khusus. Dalam masing-masing kerangka acuan, pengamat bisa menggunakan sebuah sistem koordinat lokal (biasanya koordinat Kartesius dalam konteks ini) untuk mengukur jarak, dan sebuah jam untuk mengukur interval waktu. Sebuah adalah sesuatu yang terjadi di suatu titik dalam ruang pada suatu saat dalam waktu, atau lebih formalnya suatu titik dalam ruang waktu. Transformasi ini menghubungkan koordinat ruang dan waktu dari sebuah kejadian sebagaimana diukur oleh seorang pengamat dalam masing-masing kerangka. Transformasi Lorentz menggantikan transformasi Galileo dari mekanika klasik, yang mengasumsikan bahwa ruang dan waktu bersifat mutlak (lihat ). Transformasi Galileo merupakan perkiraan yang bagus hanya untuk kecepatan relatif yang jauh lebih kecil daripada kecepatan cahaya. Transformasi Lorentz mengandung beberapa hal yang tidak intuitif yang tidak terdapat dalam transformasi Galileo. Contohnya, transformasi Lorentz mengimplikasikan bahwa pengamat yang begerak dengan kecepatan yang berbeda bisa mengukur jarak yang berbeda, selang waktu yang berbeda, dan bahkan urutan kejadian yang berbeda, tetapi selalu sedemikian rupa sehingga laju cahaya bernilai sama dalam semua kerangka acuan inersia. Kekararan laju cahaya adalah salah satu postulat relativitas khusus. Dalam sejarahnya, transformasi ini merupakan hasil dari usaha oleh Lorentz dan ilmuwan lainnya untuk menjelaskan mengapa laju cahaya tidak dipengaruhi oleh kerangka acuan, dan untuk memahami simetri dari hukum-hukum elektromagnetisme. Transformasi Lorentz bersesuaian dengan relativitas khusus Albert Einstein, tetapi diturunkan lebih dahulu. Transformasi Lorentz merupakan sebuah transformasi linear. Transformasinya bisa mengandung rotasi ruang; transformasi Lorentz yang tidak mengandung rotasi disebut Lorentz boost. Dalam ruang Minkowski, sebuah model matematika dari ruang waktu dalam relativitas khusus, transformasi Lorentz mempertahankan interval ruang waktu di antara dua kejadian manapun. Sifat ini adalah sifat terpenting dari transformasi Lorentz. Transformasi ini hanya menggambarkan transformasi di mana kejadian ruang waktu di titik asal dibuat tetap. Transformasi ini bisa dianggap sebagai dari ruang Minkowski. Seperangkat transformasi yang lebih umum yang juga berisi translasi dikenal sebagai . (in)
- In fisica le trasformazioni di Lorentz, formulate dal fisico Hendrik Antoon Lorentz, sono trasformazioni lineari di coordinate che permettono di descrivere come varia la misura del tempo e dello spazio tra due sistemi di riferimento inerziali, cioè sistemi in cui l'oggetto della misura è in moto rettilineo uniforme rispetto all'osservatore. Albert Einstein ricavò a sua volta le trasformazioni di Lorentz nell'articolo sulla relatività ristretta del 1905 postulando la costanza della velocità della luce in ogni sistema di riferimento e la validità della relatività galileiana. Il fatto che l'equazione delle onde si conservi sotto trasformazione di Lorentz permette di scrivere le equazioni di Maxwell dell'elettromagnetismo in una forma invariante nel passaggio tra due sistemi di riferimento in moto relativo tra loro. Questo ha rimosso le contraddizioni esistenti tra elettromagnetismo e meccanica classica e spiegato i risultati nulli dell'esperimento di Michelson-Morley. Il gruppo delle trasformazioni di Lorentz, pur comprendendo anche le classiche rotazioni degli assi spaziali, è caratterizzato dalla presenza dei boost (letteralmente in italiano "spinta"), cioè le trasformazioni fra due sistemi inerziali in moto relativo fra loro. Tali trasformazioni consistono essenzialmente in rotazioni che coinvolgono anche l'orientamento dell'asse temporale. (it)
- De lorentztransformatie, genoemd naar zijn bedenker, de Nederlandse natuurkundige Hendrik Antoon Lorentz, beschrijft de overgang van de ene ruimtetijd naar een andere die met een constante snelheid ten opzichte van de eerste beweegt. De lorentztransformatie geeft het verband tussen de ruimte- en tijdcoördinaten van de beide stelsels. De lorentztransformatie vormt de basis van de speciale relativiteitstheorie. Deze theorie werd geponeerd om de tegenstrijdigheden tussen de theorieën van elektromagnetisme en klassieke mechanica uit de wereld te helpen. (nl)
- 로런츠 변환(Lorentz transformation)은 네덜란드의 수학자겸 물리학자 헨드릭 안톤 로런츠가 발견한, 전자기학과 고전역학 간의 모순을 해결해 낸 특수상대성이론의 기본을 이루는 변환식이다. 예를 들어, 이 변환식을 사용해서 기준 관성계에 일정한 속도로 운동하는 다른 관성계에서 관찰한 입자의 궤적이 어떻게 되는지를 계산할 수 있다. 로런츠 변환은 고전 역학의 갈릴레이 변환을 대체하는 식이다. 이 변환식은 진공에서의 빛의 속도 c를 계수로 포함한다. c를 무한대로 두면 식은 갈릴레이 변환과 동일하게 된다. 로런츠 변환은 (group transformation)의 일종으로, 한 관성계의 공간, 시간좌표 를 에 의 상대속도로 움직이는 다른 관성계의 좌표 의 좌표를 변환한다. 어떤 사건(event)가 계에서 의 시공간 좌표를 갖고, 계에서 의 좌표를 갖는다면, 이 두 좌표들 간의 관계는 다음과 같은 로런츠 변환식으로 주어진다. 여기서 이고, 는 (진공에서의) 광속을 나타낸다. 위 변환식은 상대속도 가 좌표계의 x축 방향일 때만 성립한다. 가 계의 x축 방향이 아닐 때에는 좌표축의 회전을 통해 가 x축 방향을 향하도록 하는 편이 일반적인 로런츠 변환식을 구하는 것보다 간단하다. 또 다른 위 식의 제한조건은 두 시공간 좌표의 원점이 일치해야 한다는 점이다. 즉, 계의 가 계의 과 일치해야 한다.(수학적인 설명이 부족하므로 추후 다시 수정할 예정) (ko)
- ローレンツ変換(ローレンツへんかん、英: Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(節参照)。 (ja)
- Transformacja Lorentza, przekształcenie Lorentza – przekształcenie liniowe przestrzeni Minkowskiego umożliwiające obliczenie wielkości fizycznych w poruszającym się układzie odniesienia, jeśli wielkości te znane są w danym układzie. Przekształceniu Lorentza podlegają 4-wektory: 4-wektor położeń ciał w czasoprzestrzeni 4-wektor prędkości ciał w czasoprzestrzeni, 4-wektor energii-pędu, tensory pola elektrycznego i magnetycznego itd. Bardziej ogólną transformacją czasoprzestrzeni jest transformacja Poincarego. (pl)
- Em física, as transformações de Lorentz, em homenagem ao físico neerlandês Hendrik Lorentz, descrevem como, de acordo com a relatividade especial, as medidas de espaço e tempo de dois observadores se alteram em cada sistema de referência. Elas refletem o fato de que observadores se movendo com velocidades diferentes medem diferentes valores de distância, tempo e, em alguns casos, a ordenação de eventos. Matematicamente, o fator de Lorentz é determinado por: A transformação de Lorentz foi originalmente o resultado da tentativa de Lorentz e outros cientistas, como Woldemar Voigt, para explicar as propriedades observadas da luz propagando-se no que se presumia ser o éter luminífero; Albert Einstein posteriormente reinterpreta a transformação como sendo uma consequência da natureza do espaço e tempo. A transformação de Lorentz substitui a transformação de Galileu da física newtoniana, que assumia um espaço e tempo absoluto. De acordo com a relatividade especial, a transformação de Galileu é apenas uma boa aproximação para velocidades relativas muito menores que a velocidade da luz. (pt)
- Перетворення Лоренца — лінійні перетворення координат простору Мінковського, що залишають незмінним просторово-часовий інтервал. Перетворення Лоренца пов'язують координати подій в різних інерційних системах відліку та мають фундаментальне значення в фізиці. Інваріантність фізичної теорії відносно перетворень Лоренца, або загальна коваріантність, є необхідною умовою достовірності цієї теорії. (uk)
- Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов. Преобразования Лоренца псевдоевклидова пространства сигнатуры находят широкое применение в физике, в частности, в специальной теории относительности (СТО), где в качестве аффинного псевдоевклидова пространства выступает четырёхмерный пространственно-временной континуум (пространство Минковского). (ru)
- Lorentztransformationen är en uppsättning ekvationer inom relativitetsteorin som anger hur tids- och rumskoordinater mäts i olika inertialsystem. Dessa ekvationer används för att transformera dessa storheter mellan olika inertialsystem. En storhet som inte ändras av en Lorentztransformation sägs vara Lorentzinvariant. Relativitetsteorin postulerar att ljusets hastighet är densamma i alla referenssystem, vilket är ett tillräckligt antagande för att härleda Lorentztransformationen. (sv)
- 洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。 (zh)
|
rdfs:comment
|
- Οι Μετασχηματισμοί Λόρεντς, οι οποίοι ονομάστηκαν προς τιμήν του Ολλανδού φυσικού και μαθηματικού Χέντρικ Λόρεντς (Hendrik Antoon Lorentz) (1853-1928) και αποτελούν τη βάση της Ειδικής θεωρίας της Σχετικότητας, η οποία εισήχθη σε μια προσπάθεια να αρθούν οι αντιφάσεις ανάμεσα στις θεωρίες του ηλεκτρομαγνητισμού και της Κλασικής Μηχανικής. (el)
- Las transformaciones de Lorentz, dentro de la teoría de la relatividad especial, son un conjunto de relaciones que dan cuenta de cómo se relacionan las medidas de una magnitud física obtenidas por dos observadores diferentes. Estas relaciones establecieron la base matemática de la teoría de la relatividad espacial de Einstein, ya que las transformaciones de Lorentz precisan el tipo de geometría del espacio-tiempo requeridas por la teoría de Einstein. Matemáticamente el conjunto de todas las transformaciones de Lorentz forman el grupo de Lorentz. (es)
- Fisikan, Lorentz-en transformazioa koordenatu sistema batetik honekiko abiadura konstantez higitzen ari den beste koordenatu sistema baterako sei parametrodun linealen familia da. Honi dagokion alderantzizko transformazioa abiadura honen negatiboaz parametrizatzen da. Transformazioa garatu zuen Hendrik Lorentz Herbehereetako fisikariaren omenez du izena. (eu)
- De lorentztransformatie, genoemd naar zijn bedenker, de Nederlandse natuurkundige Hendrik Antoon Lorentz, beschrijft de overgang van de ene ruimtetijd naar een andere die met een constante snelheid ten opzichte van de eerste beweegt. De lorentztransformatie geeft het verband tussen de ruimte- en tijdcoördinaten van de beide stelsels. De lorentztransformatie vormt de basis van de speciale relativiteitstheorie. Deze theorie werd geponeerd om de tegenstrijdigheden tussen de theorieën van elektromagnetisme en klassieke mechanica uit de wereld te helpen. (nl)
- ローレンツ変換(ローレンツへんかん、英: Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(節参照)。 (ja)
- Transformacja Lorentza, przekształcenie Lorentza – przekształcenie liniowe przestrzeni Minkowskiego umożliwiające obliczenie wielkości fizycznych w poruszającym się układzie odniesienia, jeśli wielkości te znane są w danym układzie. Przekształceniu Lorentza podlegają 4-wektory: 4-wektor położeń ciał w czasoprzestrzeni 4-wektor prędkości ciał w czasoprzestrzeni, 4-wektor energii-pędu, tensory pola elektrycznego i magnetycznego itd. Bardziej ogólną transformacją czasoprzestrzeni jest transformacja Poincarego. (pl)
- Перетворення Лоренца — лінійні перетворення координат простору Мінковського, що залишають незмінним просторово-часовий інтервал. Перетворення Лоренца пов'язують координати подій в різних інерційних системах відліку та мають фундаментальне значення в фізиці. Інваріантність фізичної теорії відносно перетворень Лоренца, або загальна коваріантність, є необхідною умовою достовірності цієї теорії. (uk)
- Преобразова́ния Ло́ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов. Преобразования Лоренца псевдоевклидова пространства сигнатуры находят широкое применение в физике, в частности, в специальной теории относительности (СТО), где в качестве аффинного псевдоевклидова пространства выступает четырёхмерный пространственно-временной континуум (пространство Минковского). (ru)
- Lorentztransformationen är en uppsättning ekvationer inom relativitetsteorin som anger hur tids- och rumskoordinater mäts i olika inertialsystem. Dessa ekvationer används för att transformera dessa storheter mellan olika inertialsystem. En storhet som inte ändras av en Lorentztransformation sägs vara Lorentzinvariant. Relativitetsteorin postulerar att ljusets hastighet är densamma i alla referenssystem, vilket är ett tillräckligt antagande för att härleda Lorentztransformationen. (sv)
- 洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。 (zh)
- تحويل لورينتز (بالإنجليزية: Lorenz transformation) عبارة عن مجموعة تحويلات تستخدم لتحويل الإحداثيات المكانية والزمانية (أو بشكل عام أي متجه رباعي الأبعاد) في إطار مرجعي عطالي س إلى الإحداثيات الأربعة في إطار مرجعي آخر ع. تعتمد تحويلات لورينتز على وجود سرعة قصوى في الكون لا يمكن للأجسام تعديتها، ألا وهي سرعة الضوء c في الفراغ. فاذا حصل الحدث في الإطار المرجعي العطالي (مختبر) س بالإحداثيات وشوهد الحدث نفسه من «المختبر» ع بالإحداثيات فيحتم مبدأ النسبية (تساوي القوانين الطبيعية في س وع) مع اعتبار سرعة الضوء c هي أقصي سرعة في الكون للأجسام ولانتقال الطاقة، فتوصل لورينتز إلى التحويلات الآتية: حيث: (ar)
- La transformació de Lorentz (Hendrik Lorentz, 1853 - 1928) estableix una de les bases matemàtiques de la teoria de la relativitat especial que havia estat introduïda per a resoldre certes inconsistències entre l'electromagnetisme i la mecànica clàssica. La transformació de Lorentz permet calcular com varien les propietats d'un sistema físic entre diferents observadors inercials i actualitza la transformació de Galileu utilitzada en física fins aleshores. La transformació de Lorentz permet preservar el valor de la velocitat de la llum constant per a tots els observadors inercials. , (ca)
- Lorentzova transformace je soustava rovnic umožňující pomocí souřadnic x, y, z, t nějaké události U v inerciální vztažné soustavě S vyjádřit souřadnice x' , y' , z' , t' téže události v jiné inerciální vztažné soustavě S', která se vzhledem k původní soustavě S pohybuje rychlostí v. Podle týchž pravidel jako události se transformují i všechny ostatní čtyřvektory. (cs)
- En fiziko, la lorenca transformo (aŭ transformo de Lorentz), estas en speciala teorio de relativeco, kiu konvertas dimensiojn de spaco kaj tempo inter du malsamaj rigardantoj, kie unu rigardanto estas en konstanta moviĝo kun respekto al la alia. La lorenca transformo por norma konfiguro estas: kie estas la . Skalara invarianta sub lorencaj transformoj estas . La transformo konservas ekvaciojn de Maxwell. (eo)
- Die Lorentz-Transformationen, nach Hendrik Antoon Lorentz, sind eine Klasse von Koordinatentransformationen, die in der Physik Beschreibungen von Phänomenen in verschiedenen Bezugssystemen ineinander überführen. Sie verbinden in einer vierdimensionalen Raumzeit die Zeit- und Ortskoordinaten, mit denen verschiedene Beobachter angeben, wann und wo Ereignisse stattfinden. Die Lorentz-Transformationen bilden daher die Grundlage der Speziellen Relativitätstheorie von Albert Einstein. Die Lorentz-Transformationen bilden eine Gruppe im mathematischen Sinn, die Lorentz-Gruppe: (de)
- In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz. The most common form of the transformation, parametrized by the real constant representing a velocity confined to the x-direction, is expressed as Expressing the speed as an equivalent form of the transformation is (en)
- Les transformations de Lorentz sont des transformations linéaires des coordonnées d'un point de l'espace-temps de Minkowski à quatre dimensions.En relativité restreinte, elles correspondent aux lois de changement de référentiel galiléen pour lesquelles les équations de la physique sont préservées, et pour lesquelles la vitesse de la lumière demeure identique dans tous les référentiels galiléens. Elles sont parfois considérées comme l'équivalent relativiste des transformations de Galilée de la mécanique classique. La forme la plus courante est : (fr)
- Dalam fisika, transformasi Lorentz adalah seperangkat transformasi linear satu-parameter dari sistem koordinat suatu kerangka acuan dalam ruang waktu ke kerangka yang lain yang bergerak dengan kecepatan yang konstan (parameternya) relatif terhadap kerangka yang awal. Transformasi inversnya berbentuk serupa dengan parameter negatif dari kecepatan tersebut. Nama transformasi ini dinamai dari fisikawan Belanda Hendrik Lorentz. Bentuk paling umum dari transformasi ini, dengan parameter sebuah konstanta real melambangkan kecepatan sejajar sumbu-x, dituliskan sebagai (in)
- 로런츠 변환(Lorentz transformation)은 네덜란드의 수학자겸 물리학자 헨드릭 안톤 로런츠가 발견한, 전자기학과 고전역학 간의 모순을 해결해 낸 특수상대성이론의 기본을 이루는 변환식이다. 예를 들어, 이 변환식을 사용해서 기준 관성계에 일정한 속도로 운동하는 다른 관성계에서 관찰한 입자의 궤적이 어떻게 되는지를 계산할 수 있다. 로런츠 변환은 고전 역학의 갈릴레이 변환을 대체하는 식이다. 이 변환식은 진공에서의 빛의 속도 c를 계수로 포함한다. c를 무한대로 두면 식은 갈릴레이 변환과 동일하게 된다. 로런츠 변환은 (group transformation)의 일종으로, 한 관성계의 공간, 시간좌표 를 에 의 상대속도로 움직이는 다른 관성계의 좌표 의 좌표를 변환한다. 어떤 사건(event)가 계에서 의 시공간 좌표를 갖고, 계에서 의 좌표를 갖는다면, 이 두 좌표들 간의 관계는 다음과 같은 로런츠 변환식으로 주어진다. 여기서 이고, 는 (진공에서의) 광속을 나타낸다. (ko)
- In fisica le trasformazioni di Lorentz, formulate dal fisico Hendrik Antoon Lorentz, sono trasformazioni lineari di coordinate che permettono di descrivere come varia la misura del tempo e dello spazio tra due sistemi di riferimento inerziali, cioè sistemi in cui l'oggetto della misura è in moto rettilineo uniforme rispetto all'osservatore. (it)
- Em física, as transformações de Lorentz, em homenagem ao físico neerlandês Hendrik Lorentz, descrevem como, de acordo com a relatividade especial, as medidas de espaço e tempo de dois observadores se alteram em cada sistema de referência. Elas refletem o fato de que observadores se movendo com velocidades diferentes medem diferentes valores de distância, tempo e, em alguns casos, a ordenação de eventos. Matematicamente, o fator de Lorentz é determinado por: (pt)
|