About: Moduli space

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli.

Property Value
dbo:abstract
  • In der Mathematik bezeichnet man einen geometrischen Raum, dessen Punkte den verschiedenen mathematischen Objekten eines bestimmten Typs entsprechen, als Modulraum dieser Objekte. Beispielsweise ist die projektive Ebene der Modulraum aller Geraden durch den Nullpunkt im . Der Modulraum der elliptischen Kurven über ist die Modulkurve In der algebraischen Geometrie hat man für die Klassifikation algebraisch-geometrischer Objekte die Definitionen eines feinen Modulraums und eines groben Modulraums. Der feine Modulraum hat bessere Eigenschaften, existiert aber nicht immer. Daneben spricht man auch in anderen Gebieten der Mathematik von Modulräumen mathematischer Objekte, ohne dass es für diesen Begriff eine einheitliche Definition gäbe. Beispielsweise ist in der symplektischen Geometrie der Modulraum der pseudoholomorphen Kurven von großer Bedeutung oder in der Teichmüller-Theorie der Modulraum hyperbolischer Metriken. (de)
  • In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. (en)
  • En mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux. En physique, et en particulier dans les théories de champ supersymétriques les champs scalaires neutres sous le groupe de jauge et de masse nulle sont également appelés modules et l'ensemble de ces champs constitue l'espace de modules quantiques de la théorie. Le lien entre les deux appellations apparait en théorie des supercordes où les différentes compactifications de la théorie sur des variétés avec holonomie spéciale donne lieu à des théories effectives supersymétriques. Dans ce cas, l'espace des modules quantiques de cette théorie contient en particulier l'espace des modules de la variété de compactification. (fr)
  • 代数幾何学では、モジュライ空間(モジュライくうかん、moduli space)とは(普通、スキーム、もしくは代数的スタック(algebraic stack))空間の点が、決められた種類の代数幾何学的な対象を表す点となっている、もしくは、そのような対象と(isomorphism class)を表現している点からなる幾何学的な空間のことを言う。そのような空間はしばしば分類問題の解として現れる。注目している対象の集まり(例えば、決められた種数を持つ滑らかな代数曲線のような)へ幾何学的空間の構造を与えることができると、出来上がる空間に座標を導入することで対象をパラメータ化できる。この文脈では「モジュラス」は「パラメータ」と同じような意味に使われる。初期には、モジュライ空間は対象の空間というよりパラメータの空間として理解されていた。 (ja)
  • 대수기하학에서 모듈라이 공간(moduli空間, 영어: moduli space)은 각 점이 어떤 공간족의 각 원소와 대응하는 공간이다. 이를 사용하여, 여러 분류 문제를 해결할 수 있다. 대수적 위상수학의 분류 공간과 유사한 개념이다. (ko)
  • In de algebraïsche meetkunde, een deelgebied van de wiskunde, is een moduliruimte een meetkundige ruimte (meestal een schema of een ), waarvan de punten algebraïsch-meetkundige objecten van een bepaalde vaste vorm representeren, of van dergelijke objecten. Dergelijke ruimten ontstaan vaak als oplossingen voor classificatieproblemen: als men kan aantonen dat een collectie van interessante objecten (dat wil zeggen de gladde algebraïsche krommen van een vaste genus) een structuur van een meetkundige ruimte kan worden gegeven, dan kan men zulke objecten parametriseren door coördinaten in de resulterende ruimte te introduceren. In deze context wordt de term "modulus" gebruikt als synoniem voor "parameter"; moduliruimten werden aanvankelijk eerst als ruimten van parameters in plaats als ruimten van objecten begrepen. (nl)
  • Пространство модулей в алгебраической геометрии — это геометрическое пространство (например, схема, или пространство), точки которого соответствуют некоторому классу алгебро-геометрических объектов , факторизованному по некоторому отношению эквивалентности . Такие пространства часто возникают как решения классификационных задач: если множество интересующих нас объектов (например, гладких алгебраических кривых рода , рассматриваемых с точностью до изоморфизма), может быть снабжено структурой геометрического пространства, то можно параметризовать данные объекты, введя координаты на этом пространстве. В данном контексте термин «модули» синонимичен термину «параметры»: пространства модулей первоначально понимались как пространства параметров, а не пространства объектов. (ru)
  • 在代数几何上,模问题用于描述代数簇所依赖的参数。对于这样一个参数使用模这一词和模形式相似:一个模形式通常是模空间(Moduli space,即其坐标为模的空间)上的某种微分形式(或者),因为这些形式通常有一个權重。 在椭圆曲线的情况,有一个模,所以模空间是代数曲线。这是在雅可比的椭圆函数理论中称为k的一个量,他将椭圆积分归约为如下形式 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 361609 (xsd:integer)
dbo:wikiPageLength
  • 28727 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119733351 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. (en)
  • 代数幾何学では、モジュライ空間(モジュライくうかん、moduli space)とは(普通、スキーム、もしくは代数的スタック(algebraic stack))空間の点が、決められた種類の代数幾何学的な対象を表す点となっている、もしくは、そのような対象と(isomorphism class)を表現している点からなる幾何学的な空間のことを言う。そのような空間はしばしば分類問題の解として現れる。注目している対象の集まり(例えば、決められた種数を持つ滑らかな代数曲線のような)へ幾何学的空間の構造を与えることができると、出来上がる空間に座標を導入することで対象をパラメータ化できる。この文脈では「モジュラス」は「パラメータ」と同じような意味に使われる。初期には、モジュライ空間は対象の空間というよりパラメータの空間として理解されていた。 (ja)
  • 대수기하학에서 모듈라이 공간(moduli空間, 영어: moduli space)은 각 점이 어떤 공간족의 각 원소와 대응하는 공간이다. 이를 사용하여, 여러 분류 문제를 해결할 수 있다. 대수적 위상수학의 분류 공간과 유사한 개념이다. (ko)
  • Пространство модулей в алгебраической геометрии — это геометрическое пространство (например, схема, или пространство), точки которого соответствуют некоторому классу алгебро-геометрических объектов , факторизованному по некоторому отношению эквивалентности . Такие пространства часто возникают как решения классификационных задач: если множество интересующих нас объектов (например, гладких алгебраических кривых рода , рассматриваемых с точностью до изоморфизма), может быть снабжено структурой геометрического пространства, то можно параметризовать данные объекты, введя координаты на этом пространстве. В данном контексте термин «модули» синонимичен термину «параметры»: пространства модулей первоначально понимались как пространства параметров, а не пространства объектов. (ru)
  • 在代数几何上,模问题用于描述代数簇所依赖的参数。对于这样一个参数使用模这一词和模形式相似:一个模形式通常是模空间(Moduli space,即其坐标为模的空间)上的某种微分形式(或者),因为这些形式通常有一个權重。 在椭圆曲线的情况,有一个模,所以模空间是代数曲线。这是在雅可比的椭圆函数理论中称为k的一个量,他将椭圆积分归约为如下形式 (zh)
  • In der Mathematik bezeichnet man einen geometrischen Raum, dessen Punkte den verschiedenen mathematischen Objekten eines bestimmten Typs entsprechen, als Modulraum dieser Objekte. Beispielsweise ist die projektive Ebene der Modulraum aller Geraden durch den Nullpunkt im . Der Modulraum der elliptischen Kurven über ist die Modulkurve In der algebraischen Geometrie hat man für die Klassifikation algebraisch-geometrischer Objekte die Definitionen eines feinen Modulraums und eines groben Modulraums. Der feine Modulraum hat bessere Eigenschaften, existiert aber nicht immer. (de)
  • En mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux. (fr)
  • In de algebraïsche meetkunde, een deelgebied van de wiskunde, is een moduliruimte een meetkundige ruimte (meestal een schema of een ), waarvan de punten algebraïsch-meetkundige objecten van een bepaalde vaste vorm representeren, of van dergelijke objecten. Dergelijke ruimten ontstaan vaak als oplossingen voor classificatieproblemen: als men kan aantonen dat een collectie van interessante objecten (dat wil zeggen de gladde algebraïsche krommen van een vaste genus) een structuur van een meetkundige ruimte kan worden gegeven, dan kan men zulke objecten parametriseren door coördinaten in de resulterende ruimte te introduceren. In deze context wordt de term "modulus" gebruikt als synoniem voor "parameter"; moduliruimten werden aanvankelijk eerst als ruimten van parameters in plaats als ruimten (nl)
rdfs:label
  • Modulraum (de)
  • Espace de modules (fr)
  • 모듈라이 공간 (ko)
  • Moduli space (en)
  • モジュライ空間 (ja)
  • Moduliruimte (nl)
  • Пространство модулей (ru)
  • 模空间 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License