About: Tate pairing

An Entity of Type: WikicatEllipticCurves, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Tate pairing is any of several closely related bilinear pairings involving elliptic curves or abelian varieties, usually over local or finite fields, based on the Tate duality pairings introduced by Tate and extended by . applied the Tate pairing over finite fields to cryptography.

Property Value
dbo:abstract
  • In mathematics, Tate pairing is any of several closely related bilinear pairings involving elliptic curves or abelian varieties, usually over local or finite fields, based on the Tate duality pairings introduced by Tate and extended by . applied the Tate pairing over finite fields to cryptography. (en)
  • 在數學中,Tate配對是針對 椭圆曲线 或 的幾種雙線性配對之一,通常基於局部域或有限域。理論基礎由 (, ) 引入,後由 ) 擴展的 Tate 二元配對。 ) 將有限域上的 Tate 配對應用於密碼學。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 34128228 (xsd:integer)
dbo:wikiPageLength
  • 2217 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1098479912 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • John Tate (en)
dbp:last
  • Tate (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1958 (xsd:integer)
  • 1963 (xsd:integer)
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, Tate pairing is any of several closely related bilinear pairings involving elliptic curves or abelian varieties, usually over local or finite fields, based on the Tate duality pairings introduced by Tate and extended by . applied the Tate pairing over finite fields to cryptography. (en)
  • 在數學中,Tate配對是針對 椭圆曲线 或 的幾種雙線性配對之一,通常基於局部域或有限域。理論基礎由 (, ) 引入,後由 ) 擴展的 Tate 二元配對。 ) 將有限域上的 Tate 配對應用於密碼學。 (zh)
rdfs:label
  • Accouplement de Tate (fr)
  • Tate pairing (en)
  • Tate配对 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License