Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T16:37:08.476Z Has data issue: false hasContentIssue false

Domain theoretic characterisations of quasi-metric completeness in terms of formal balls

Published online by Cambridge University Press:  07 April 2010

SALVADOR ROMAGUERA
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46071 Valencia, Spain Email: sromague@mat.upv.es
OSCAR VALERO
Affiliation:
Departamento de Ciencias Matemáticas e Informática, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Baleares, Spain Email: o.valero@uib.es

Abstract

We characterise those quasi-metric spaces (X, d) whose poset BX of formal balls satisfies the condition(*)From this characterisation, we then deduce that a quasi-metric space (X, d) is Smyth-complete if and only if BX is a dcpo satisfying condition (*). We also give characterisations in terms of formal balls for sequentially Yoneda complete quasi-metric spaces and for Yoneda complete T1 quasi-metric spaces. Finally, we discuss several properties of the Heckmann quasi-metric on the formal balls of any quasi-metric space.

Type
Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliakbari, M., Honari, B., Pourmahdian, M. and Rezaii, M. M. (2009) The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science 19 337355.CrossRefGoogle Scholar
Di Concilio, A. (1971) Spazi quasimetrici e topologie ad essi associate. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche Napoli 38 113130.Google Scholar
Edalat, A. (1995a) Domain theory and integration. Theoretical Computer Science 151 163193.CrossRefGoogle Scholar
Edalat, A. (1995b) Dynamical systems, measures and fractals via domain theory. Information and Computation 120 3248.CrossRefGoogle Scholar
Edalat, A. and Heckmann, R. (1998) A computational model for metric spaces. Theoretical Computer Science 193 5373.CrossRefGoogle Scholar
Edalat, A. and Sünderhauf, Ph. (1999) Computable Banach spaces via domain theory. Theoretical Computer Science 219 169184.CrossRefGoogle Scholar
Engelking, R. (1977) General Topology, Monografie Mat. Tom 60, PWN-Polish Scientific Publishers.Google Scholar
Flagg, B. and Kopperman, R. (1997) Computational models for ultrametric spaces. Electronic Notes in Theoretical Computer Science 6 151159.CrossRefGoogle Scholar
Fletcher, P. and Lindgren, W. F. (1982) Quasi-Uniform Spaces, Marcel Dekker.Google Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003) Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications 93, Cambridge University Press.CrossRefGoogle Scholar
Heckmann, R. (1999) Approximation of metric spaces by partial metric spaces. Applied Categorical Structures 7 7183.CrossRefGoogle Scholar
Kopperman, K., Künzi, H. P. A. and Waszkiewicz, P. (2004) Bounded complete models of topological spaces. Topology and its Applications 139 285297.CrossRefGoogle Scholar
Krötzsch, M. (2006) Generalized ultrametric spaces in quantitative domain theory. Theoretical Computer Science 368 3049.CrossRefGoogle Scholar
Künzi, H. P. A. (1993) Nonsymmetric topology. In: Proc. Szekszárd Conf. 4, Bolyai Society of Math. Studies 303338.Google Scholar
Künzi, H. P. A. (2001) Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. In: Aull, C.E. and Lowen, R. (eds.) Handbook of the History of General Topology 3, Kluwer 853968.CrossRefGoogle Scholar
Künzi, H. P. A. and Schellekens, M. P. (2002) On the Yoneda completion of a quasi-metric space. Theoretical Computer Science 278 159194.CrossRefGoogle Scholar
Lawson, J. (1997) Spaces of maximal points. Mathematical Structures in Computer Science 7 543556.CrossRefGoogle Scholar
Martin, K. (1998) Domain theoretic models of topological spaces. Electronic Notes in Theoretical Computer Science 13 173181.CrossRefGoogle Scholar
Matthews, S. G. (1994) Partial metric topology. In: Proceedings 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 183197.CrossRefGoogle Scholar
Reilly, I. L., Subrhamanyam, P. V. and Vamanamurthy, M. K. (1982) Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte für Mathematik 93 127140.CrossRefGoogle Scholar
Rodríguez-López, J., Romaguera, S. and Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics 85 623630.CrossRefGoogle Scholar
Romaguera, S. (1992) Left K-completeness in quasi-metric spaces. Mathematische Nachrichten 157 1523.CrossRefGoogle Scholar
Romaguera, S. (2009) On computational models for the hyperspace. In: Baswell, A. R. (ed.) Advances in Mathematics Research 8, Nova Science Publishers 277294.Google Scholar
Romaguera, S., Sapena, A. and Tirado, P. (2007) The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topology and its Applications 154 21962203.CrossRefGoogle Scholar
Romaguera, S. and Schellekens, M. P. (2005) Partial metric monoids and semivaluation spaces. Topology and its Applications 153 948962.CrossRefGoogle Scholar
Romaguera, S. and Valero, O. (2009) A quantitative computational model for complete partial metric spaces via formal balls. Mathematical Structures in Computer Science 19 541563.CrossRefGoogle Scholar
Rutten, J. J. M. M. (1998) Weighted colimits and formal balls in generalized metric spaces. Topology and its Applications 89 179202.CrossRefGoogle Scholar
Salbany, S. (1974) Bitopological Spaces, Compactifications and Completions, Mathematic Monographs 1, Department of Mathematics, University of Cape Town.Google Scholar
Schellekens, M. P. (2003) A characterization of partial metrizability. Domains are quantifiable. Theoretical Computer Science 305 409432.CrossRefGoogle Scholar
Schellekens, M. P. (2004) The correspondence between partial metrics and semivaluations. Theoretical Computer Science 315 135149.CrossRefGoogle Scholar
Smyth, M.B. (1988) Quasi-uniformities: Reconciling domains with metric spaces. In: Mathematical Foundations of Programming Language Semantics. Springer-Verlag Lecture Notes in Computer Science 298 236253.CrossRefGoogle Scholar
Sünderhauf, Ph. (1995) Quasi-uniform completeness in terms of Cauchy nets. Acta Mathematica Hungarica 69 4754.CrossRefGoogle Scholar
Waszkiewicz, P. (2001) Distance and measurement in domain theory. Electronic Notes in Theoretical Computer Science 45 448462.CrossRefGoogle Scholar
Waszkiewicz, P. (2003) Quantitative continuous domains. Applied Categorical Structures 11 4167.CrossRefGoogle Scholar
Waszkiewicz, P. (2006) Partial metrisability of continuous posets. Mathematical Structures in Computer Science 16 359372.CrossRefGoogle Scholar