Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T06:09:43.508Z Has data issue: false hasContentIssue false

Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles

Published online by Cambridge University Press:  23 September 2016

Silvestre Roberto Gonzalez Avila*
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore 637371
Claus-Dieter Ohl
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore 637371
*
Email address for correspondence: roberto_glez83@hotmail.com

Abstract

We report on an experimental study on the dynamics and fragmentation of water droplets levitated in a sound field exposed to a single laser-induced cavitation bubble. The nucleation of the cavitation bubble leads to a shock wave travelling inside the droplet and reflected from pressure release surfaces. Experiments and simulations study the location of the high negative pressures inside the droplet which result into secondary cavitation. Later, three distinct fragmentation scenarios are observed: rapid atomization, sheet formation and coarse fragmentation. Rapid atomization occurs when the expanding bubble, still at high pressure, ruptures the liquid film separating the bubble from the surrounding air and a shock wave is launched into the surrounding air. Sheet formation occurs due to the momentum transfer of the expanding bubble; for sufficiently small bubbles, the sheet retracts because of surface tension, while larger bubbles may cause the fragmentation of the sheet. Coarse fragmentation is observed after the first collapse of the bubble, where high-speed jets emanate from the surface of the droplet. They are the result of surface instability of the droplet combined with the impulsive pressure generated during collapse. A parameter plot for droplets in the size range between 0.17 and 1.5 mm and laser energies between 0.2 and 4.0 mJ allows the separation of these three regimes.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G., Joserrand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim. Phys. Fluids 25, 022103.CrossRefGoogle Scholar
Alexander, D. R. & Armstrong, J. G. 1987 Explosive vaporization of aerosol drops under irradiation by a CO2 laser beam. Appl. Opt. 26 (3), 533537.CrossRefGoogle Scholar
Anderson, J. D. Jr 1990 Modern Compressible Flow with Historical Perspective, 2nd edn. McGraw-Hill.Google Scholar
Antkowiak, A., Bremond, N., Dizes, S. L. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.CrossRefGoogle Scholar
Banine, V. Y., Koshelev, K. N. & Swinkels, G. H. P. M. 2011 Physical processes in EUV sources for microlithography. J. Phys. D: Appl. Phys. 44, 253001.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bouard, R. & Coutanceau, M. 1980 The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104 . J. Fluid Mech. 101, 583607.CrossRefGoogle Scholar
Brenner, M. P. D., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75, 954957.CrossRefGoogle ScholarPubMed
Carls, J. C. & Brock, J. R. 1987 Explosion of a water droplet by pulsed laser heating. Aerosol Sci. Technol. 7 (1), 7990.CrossRefGoogle Scholar
Courbin, L. & Stone, H. A. 2006 Impact, rupturing and the self-healing of soap films. Phys. Fluids 18, 2336102.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Eickmans, J. H., Hsieh, W. F. & Chang, R. K. 1987a Laser-induced explosion of H2O droplets: spatially resolved spectra. Opt. Lett. 12 (1), 2224.CrossRefGoogle ScholarPubMed
Eickmans, J. H., Hsieh, W. F. & Chang, R. K. 1987b Plasma spectroscopy of H, Li and Na plumes resulting from laser-induced explosion. Appl. Opt. 26 (17), 37213725.CrossRefGoogle Scholar
Foresti, D., Nabavi, M. & Poulikakos, D. 2012 On the acoustic levitation stability behaviour of spherical and ellipsoidal particles. J. Fluid Mech. 709, 581592.CrossRefGoogle Scholar
Gilet, T. & Bush, J. W. M. 2009 The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203.CrossRefGoogle Scholar
Gonnermann, H. H. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321356.CrossRefGoogle Scholar
Hsieh, W. F., Zheng, J.-B., Wood, C. F., Chu, B. T. & Chang, R. K. 1987 Propagation velocity of laser-induced plasma inside and outside a transparent droplet. Opt. Lett. 12 (8), 576578.CrossRefGoogle ScholarPubMed
Janzen, C., Fleige, R., Noll, R., Schwenke, H., Lahmann, W., Knoth, J., Beaven, P., Jantzen, E., Oest, A. & Koke, P. 2005 Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy. Spectrochim Acta B 60, 9931001.CrossRefGoogle Scholar
Kafalas, P. & Ferdinand, A. P. Jr 1973 Fog droplet vaporization and fragmentation by a 10. 6 μm laser pulse. Appl. Opt. 12 (1), 2933.CrossRefGoogle Scholar
Kafalas, P. & Herrmann, J. 1973 Dynamics and energetics of the explosive vaporization of fog droplets by a 10. 6 μm laser pulse. Appl. Opt. 12 (4), 772775.CrossRefGoogle Scholar
Kim, I. & Wu, X. L. 2010 Tunneling of micron-sized droplets through soap films. Phys. Rev. E 82, 026313.CrossRefGoogle ScholarPubMed
Klein, A., Bouwhuis, W., Visser, C. W., Lhuissier, H., Sun, C., Snoeijer, J. H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3 (4), 044018.CrossRefGoogle Scholar
Kobel, P., Obreschkow, D., De Bosset, A., Dorsaz, N. & Farhat, M. 2009 Techniques for generating centimetric drops in microgravity and application to cavitation studies. Exp. Fluids 47, 3948.CrossRefGoogle Scholar
Lindinger, A., Hager, J., Sosaciu, L. D., Bernhardt, T. M., Wöste, L., Duft, D. & Leisner, T. 2004 Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Appl. Opt. 43 (27), 52635269.CrossRefGoogle ScholarPubMed
Noll, R. 2012 Laser-Induced Breakdown Spectroscopy. Springer.Google Scholar
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 094502.CrossRefGoogle ScholarPubMed
Paltauf, G., Schmidt-Kloiber, H. & Frenz, M. 1998 Photoacoustic waves excited in liquids by fiber-transmitted laser pulses. J. Acoust. Soc. Am. 104, 890897.CrossRefGoogle Scholar
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.CrossRefGoogle Scholar
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.CrossRefGoogle Scholar
Robert, E., Lettery, J., Farhat, M., Monkewitz, P. A. & Avellan, F. 2007 Cavitation bubble behavior inside a liquid jet. Phys. Fluids 19, 067106.CrossRefGoogle Scholar
Schonfeld, J. F. 1992 The theory of compensated laser propagation through strong thermal blooming. Lincoln Laboratory J. 5 (1), 131150.Google Scholar
Singh, P. I. & Knight, C. J. 1980 Pulsed laser-induced shattering of water drops. AIAA J. 18 (1), 96100.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2006 Crown breakup by Marangoni instability. J. Fluid Mech. 557, 6372.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.CrossRefGoogle Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.CrossRefGoogle Scholar
Villermaux, E. & Clanet, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341363.CrossRefGoogle Scholar
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by pico-second and nano-second optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.CrossRefGoogle Scholar
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birnbruger, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271280.CrossRefGoogle Scholar
Walls, P. L. L., Bird, J. C. & Bourouiba, L. 2014 Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Compar. Biol. 54 (6), 10141025.CrossRefGoogle Scholar
Wang, J., Maiorov, M., Baer, D. S., Garbuzov, D. Z., Conolly, J. C. & Hanson, R. K. 2000 In-situ combustion measurements of CO with diode-laser absorption near 2.3 mm. Appl. Opt. 39 (30), 55795589.CrossRefGoogle Scholar
Yarin, A. L., Pfaffenlehner, M. & Tropea, C. 1998 On the acoustic levitation of droplets. J. Fluid Mech. 356, 6591.CrossRefGoogle Scholar
Zhang, J.-Z., Lam, J. K., Wood, C. F., Chu, B.-T. & Chang, R. 1987 Explosive vaporization of a large transparent droplet irradiated by a high intensity laser. Appl. Opt. 26 (22), 47314737.CrossRefGoogle ScholarPubMed