计算机科学 ›› 2020, Vol. 47 ›› Issue (2): 95-101.doi: 10.11896/jsjkx.181001848
所属专题: 医学图像
刘新怡1,田维维1,梁文茹1,何凌1,尹恒2
LIU Xin-yi1,TIAN Wei-wei1,LIANG Wen-ru1,HE Ling1,YIN Heng2
摘要: 鼻漏气是腭咽闭合不全患者的典型症状,针对腭裂语音鼻漏气的特征进行研究,利用基于非线性动力学方法的递归图对特征进行发掘,并结合递归趋势分析法和基于递归图的区域进行分布处理,提取递归图分析的量化参数和最小区域矩阵作为特征参数。结合分类器,实现对腭裂语音鼻漏气的自动识别。实验针对降采样点、延迟时间、临界距离、语音单元、分类器种类等因素,进行了识别效果的分析,并综合权衡各因素对识别正确率的影响,选取了最优取值。实验结果表明,采用KNN分类器并当降采样点为30000点、延迟时间为3ms、临界距离5个单位、语音单元为4帧时,腭裂语音鼻漏气自动识别的正确率达84.63%。腭裂语音鼻漏气自动识别算法能为临床腭咽功能评估提供高效、客观的辅助诊断依据。
中图分类号:
[1]雷丽.腭裂语音治疗学(修订1版)[M].武汉:湖北科学技术出版社,2004. [2]HE L,ZHANG J,LIU Q,et al.Automatic detection of glottal stop in cleft palate speech[J].Biomedical Signal Processing and Control,2018,39:230-236. [3]GLADE R S,DEAL R.Diagnosis and Management of Velopharyngeal Dysfunction[J].Oral & Maxillofacial Surgery Clinics of North America,2016,28(2):181-188. [4]DHAKY K,BULSARA M,SETHNA B.Speech Therapy and Assessment (via Multimedia Devices for Cleft Lip and Palate Patients)[C]∥IEEE Global Humanitarian Technology Conference.Washington: IEEE Computer Society,2011:415-418. [5]SAMOY K,HENS G,VERDONCK A,et al.Surgery for velopharyngeal insufficiency:The outcomes of the University Hospitals Leuven [J].International Journal of Pediatric Otorhinola-ryngology,2015,79(12):2213-2220. [6]WANG G M,YUAN W H,WARREN D W.Evaluation of the function of pronunciation aid by air pressure and airflow measu-ring instrument[J].Shanghai Journal of Stomatology,1998,7(2):13-16. [7]SHEN T B,MENG X Y.Comparative study of velopharyngeal closure before and after operation in children with cleft palate[J].Journal of Modern Integrated Traditional Chinese and Western Medicine,2010,19(3):319-320. [8]LIU G,PU G C,LI W S.Effect of early cleft palate repair on velopharyngeal closure in patients[J].Chongqing Medical Journal,2015,44(34):4805-4806,4809. [9]WANG G M.Diagnosis and treatment of pharyngeal closure dysfunction [J].Journal of Oral and Maxillofacial Surgery,2003,13(4):339-345. [10]LEI L.Evaluation of pharyngeal dysfunction by nasopharyngeal fiberoscopy[C]∥Chinese Journal of Stomatology.FDI World Stomatological Congress Abstracts.Chinese Journal of Stomatology,2006:2. [11]RAH D K,KO Y L,LEE C,et al.A noninvasive estimation of hypernasality using a linear predictive model[J].Annals of Biomedical Engineering,2001,29(7):587-594. [12]AKAFI E,VALI M,MORADI N.Detection of hypernasal speech in children with cleft palate[C]∥Biomedical Engineering.IEEE,2013:237-241. [13]CASTELLANOS G,DAZA G,SÁNCHEZ L,et al.Acoustic speech analysis for hypernasality detection in children[C]∥International Conference of the IEEE Engineering in Medicine & Biology Society.IEEE,2006:5507-5510. [14]DUBEY A K,PRASANNA S R M,DANDAPAT S.Zero time windowing analysis of hypernasality in speech of Cleft Lip and palate children[C]∥Communication.IEEE,2016:1-6. [15]OROZCO-ARROYAVE J,BELALCAZAR-BOLANOS E, ARIAS-LONDONO J,et al.Characterization methods for the detection of multiple voicedisorders:neurological,functional,and organic diseases[J].IEEE Journal of Biomedical & Health Informatics,2015,19(6):1820-1828. [16]NIETO R G,MARNÍ-HURTADO J I,CAPACHO-VALBUENA L M,et al.Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate[C]∥2014 XIX Symposium on Image,Signal Processing and Artificial Vision.IEEE,2014:1-5. [17]CRUZ C D L,SANTHANAM B.A joint EMD and teager-kaiser energy approach towards normal and nasal speech analysis[C]∥Conference on Signals,Systems and Computers.IEEE,2017. [18]BELALCAZAR-BOLAÑOS E,VILLA-CAÑAS T,BEDOYA-JARAMILLO S,et al.Feature selection for hypernasality detection using PCA,LDA,kernel PCA and greedy kernel PCA[C]∥Image,Signal Processing,and Artificial Vision.IEEE,2012:246-251. [19]YAN R Q.Recursive analysis of speech signal dynamics characteristics [D].Shanghai:Shanghai Jiaotong University,2006. [20]YAN R Q,ZHU Y S.Unvoiced and voiced decision based on quantitative recursive analysis[J].Journal of Electronics & Information Technology,2007(7):1703-1706. [21]JIA L,YIN Y,YANG H C.Application of recursive analysis in the detection of noisy speech endpoints[J].Journal of Shenyang Aerospace University,2017,34(6):83-86. [22]YAN R Q,ZHU Y S.Speech endpoint detection method based on signal recursion analysis[J].Journal on Communications,2007,28(1):35-39. [23]LI J,WANG J F,GAO J D.Speech endpoint detection algorithm based on empirical mode decomposition and recursive graph[J].Computer Engineering and Applications,2010,46(34):132-135,151. [24]YAN R Q,ZHU Y S.ZHU Y S.Speech endpoint detection method based on signal recursion analysis[J].Journal on Communications,2007,23(4):35-39. [25]HE Y,HE P Y,WANG S S.Method of speech enhancement based on recursive averaging and spectral subtraction[J].Computer Engineering & Applications,2009,45(8):221-223. [26]ECKMANN J P,KAMPHORST S O,RUELLE D.Recurrence plots of dynamical systems[J].Europhysics Letter,1987,4(9):973-977. [27]GUO X M,LI C P,LU D L.Application of quantitative recursive analysis and approximate entropy in heart sound classification and recognition[J].Journal of Data Acquisition & Processing,2013,28(5):559-564. [28]TAKENS F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1981,898(1):366-381. [29]GAO J B,CAI H Q.On the structures and quantification of recurrence plots[J].Physics Letter A,2000,270(1/2):75-87. [30]ZBILUT J P,WEBBER C L J.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A,1992,171:199-203. [31]LI C L,YE N,HUANG H P,et al.Physiological signals emotion recognition based on recursive quantitative analysis[J].ComputerTechnology and Development,2018,28(11):94-98,102. [32]ZHANG S C,LI X L,ZONG M.Efficient kNN Classification With Different Numbers of Nearest Neighbors[J].IEEE Transactions on Neural Networks and Learning Systems,2018,5(29):1-12. [33]GANESH M A B,RATNADEEP M A B.Automatic Speech Recognition and Verifi-cation using LPC,MFCC and SVM[J].International Journal of Computer Applications,2015,127(8):47-52. [34]DESHMUKH J,BHOSLE U.A study of mammogram classification using AdaBoost with decision tree,KNN,SVM and hybrid SVM-KNN as component classifiers[J].Journal of Information Hiding and Multimedia Signal Processing,2018,9(3):548-557. |
[1] | 刘标,兰少华,张晶,刘光杰. 一种基于递归图的网络时间隐蔽信道检测方法 Approach Based on Recurrence Plot to Detect Covert Timing Channels 计算机科学, 2015, 42(2): 114-117. https://doi.org/10.11896/j.issn.1002-137X.2015.02.024 |
[2] | 谢胜军,殷锋,周绪川. 基于递归率REC特征的网络流量相空间重构监测 Testing of Network Traffic Series in Reconstructed Phase Space Based on Recurrence Rate Feature 计算机科学, 2013, 40(11): 48-51. |
|