Análise da resposta sísmica em áreas sedimentárias extra-carpatias romenas

Autores

DOI:

https://doi.org/10.14195/1647-7723_28-2_7

Palavras-chave:

Resposta sísmica, registos de movimentos do solo

Resumo

O movimento do solo é analisado, em termos de resposta sísmica, usando gravações processadas e características espectrais relacionadas. A análise é realizada para alguns locais representativos, com diferentes condições geológicas locais. Os dados usados consistem em registros dos últimos eventos sísmicos mais fortes (30 de agosto de 1986,
Mw = 7.1, 30 de maio de 1990, Mw = 6.9 e 31 de maio de 1990, Mw = 6.4). A abordagem usada para avaliar as características particulares dos efeitos sísmicos pode abrir uma nova perspectiva no microzoneamento e estudo do risco. No contexto da sismicidade de profundidade intermédia de Vrancea, a escolha destes locais é perfeitamente justificada, dado que os seus efeitos podem ser encontrados até longas distâncias epicentrais. Deste modo, o estudo pretende destacar as particularidades que ocorrem devido à oscilação dos depósitos sedimentares, devido ao forte movimento sísmico do solo em diferentes áreas. Foram introduzidos fatores de amplificação espectral para se ter uma representação quantitativa, da variabilidade resultante dos efeitos locais.

Downloads

Não há dados estatísticos.

Referências

Aki, K. (1993). Local site effects on weak and strong ground motion. Tectonophysics, 93-111.

Anderson, J. G., Bodin, P., Brunbe, J. N., Prince, J., Singh, S. K., Quaas, R., Onate, M. (1986). Strong ground motion from the Michoacan, Mexico earthquake. Science, 1043-1049.

Ardeleanu, L., Leydecker, G., Bonjer, K.-P., Busche, H., Kaiser D., Schmitt, T. (2005). Probabilistic seismic hazard map for Romania as a basis for a new building code. Nat. Hazards Earth Syst. Sci., 679–684.

Beresnev, I., Field, E., Abeele, K. V., Johnson, P. (1998). Magnitude of Nonlinear Sediment Response in Los Angeles Basin during the 1994 Northridge, California, Earthquake. Bulletin of the Seismological Society of America, 1079-1084.

Çelebi, M., Sahakian, V. J., Melgar, D., Quintanar, L. (2018). The 19 September 2017 M=7.1 Puebla-Morelos earthquake: spectral ratios confirm Mexico City zoning. Bulletin of the Seismological Society of America, 3289–3299.

Cioflan, C. O., Apostol, B. F., Moldoveanu, C. L., Panza, G. F., Marmureanu, G. (2004). Deterministic approach for the seismic microzonation of Bucharest. PAGEOPH, p.1149-1164, March 2004, special issue: Seismic ground motion in large urban areas; Main results of the UNESCO-IUGS-IGCP Project, Panza, G. F., Nunziata, C., Paskaleva, I. (eds.), Birkhauser Verlag, Basel, Switzerland, ISSN 0033-4553.

Cioflan, C. O., Marmureanu, A., Marmureanu, G. (2009). Nonlinearity in Site Effects Evaluation, Romanian Journal of Physics, 951-963.

Chopra, S., Choudhury, P. (2011). A study of response spectra for different geological conditions in Gujarat, India. Soil Dynamics and Earthquake Engineering, 1551–1564.

EN- EUROPEAN STANDARD 1998-1. (2003). Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Bruxelles, Belgium.

Dominguez Reyes, T., Rodríguez-Lozoya, H. E., Sandoval, M. C., Sanchez, E., Meléndez, A. A., Rodríguez- Leyva, H. E., Campos, R. A. (2017). Site response in a representative region of Manzanillo, Colima, Mexico and a comparison between spectra from real records and spectra from normative. Soil Dynamics and Earthquake Engineering, 113–120.

Fah, D., Suhadolc, P., Panza, G. F. (1993). Variability of seismic ground motion in complex media: the Friuli area (Italy). Journal of Applied Geophysics, 131–148.

Hartzell, S., Cranswick, E., Frankel, A., Carver, D., Meremonte, M. (1997). Variability of site response in the Los Angeles urban area, Bulletin of the Seismological Society of America, 1377-1400.

Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh. S., Panza, G. (2012). Geodynamics and intermediate-Depth seismicity in Vrancea (the south-eastern Carpathians): Current state-of-the art. Tectonophysics, 50-79.

Kawase, H. (1996). The cause of the damage belt in Kobe: “The Basin-Edge Effect”, constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves. Seismological Research Letters, 25-34.

Leydecker, G., Busche, H., Bonjer, K., Schmitt, T., Kaiser, D., Simeonova, S., Solakov, D., Ardeleanu, L. (2008). Probabilistic seismic hazard in terms of intensities for Bulgaria and Romania – updated hazard maps. Natural Hazards and Earth System Sciences, 1431-1439.

Lungu, D., Cornea, T., Nedelcu, C. (1999). Hazard assessment and site-dependent response for Vrancea earthquakes. In: Vrancea earthquakes: tectonics, hazard and risk mitigation, Wenzel, F., Lungu, D., Novak, O. (eds.), Netherlands: Kluwer Academic Publ. Dordrecht, 251–267.

Lungu, D., Arion, C., Aldea, A., Cornea, T. (2001). City of Bucharest seismic profile: from hazard estimation to risk mitigation. In: Lungu, D., Saito, T. (eds.) Earthquake hazard estimation and countermeasures for existing fragile buildings. Independent Film, Bucharest, 43–66.

Mandrescu, N., Radulian, M., Marmureanu, G. (2007). Geological, geophysical and seismological criteria for local response evaluation in Bucharest area. Soil Dynamics and Earthquake Engineering, 367–393.

Mandrescu, N., Radulian, M. (1999). Seismic microzoning of Bucharest (Romania): a critical review. In: Vrancea earthquakes: Tectonics, hazard, and risk mitigation. Wenzel, F., Lungu, D. (eds.) Netherlands: Kluwer Academic Publ., 109–122.

Mandrescu, N., Radulian, M., Marmureanu, G., Ionescu, C. (2008). Integrate research of the geological, geophysical and seismological data for local response evaluation in Bucharest urban area, Romanian Academy Publishing House, Bucharest, ISBN 978-973-27-1635-9, 136p.

Mantyniemi, P., Marza, V.I., Kijko, A., Retief, P. (2003). A new probabilistic seismic hazard analysis for the Vrancea (Romania) seismogenic zone. Natural Hazards, 371-385.

Manea, E. F., Cioflan, C. O., Coman, A., Michel, C., Poggi, V., Fäh, D. (2020). Estimating geophysical bedrock depth using single station analysis and geophysical data in the Extra-Carpathian area of Romania. Pure and Applied Geophysics, 4829-4844.

Manea, E. F., Predoiu, A., Cioflan, C. O., Diaconescu, M. (2019). Interpretation of resonance fundamental frequency for Moldavian and Scythian platforms. Romanian Reports in Physics, 709 p.

Marmureanu, G., Misicu, M., Cioflan, C. O, Balan, S. F., Apostol, B. F. (2004). Nonlinear seismology – the seismology of the XXI century. In: Lecture notes of earth sciences. Perspective in modern seismology, Springer Verlag, Heidelberg, 47-67.

Marmureanu, G., (2016). Certainties/Incertainties in Vrancea hazard and seismic risk evaluation, Romanian Academy Publishing House, Bucharest, Romania, 330 p.

Marmureanu, G., Cioflan, C. O., Marmureanu, A. (2011). Intensity seismic hazard map of Romania by probabilistic and (neo) deterministic approaches, linear and nonlinear analyses. Romanian Reports in Physics, 226-239.

Moldovan, I. A., Popescu, E., Constantin, A. (2008). Probabilistic seismic hazard assessment in Romania: Application for crustal seismic active zones. Romanian Journal of Physics, p.575-591.

Moldoveanu, C. L., Panza, G. F. (1999). Modelling for microzonation purposes of the seismic ground motion in Bucharest, due to the Vrancea earthquake of May 30, 1990. In: Vrancea Earthquakes: Tectonics, Hazard, and Risk Mitigation. Wenzel, F., Lungu, D., Novak, O. (eds.), Netherlands: Kluwer Academic Publ. Dordrecht, 85–97.

Moldoveanu, C. L., Panza, G. F. (1999). Vrancea source influence on local seismic response in Bucharest. The Abdus Salam International Centre for Theoretical Physics, report IC/98/ 209, Miramare, Trieste, 1–28.

Neagoe, C., Manea, L. M., Ionescu, C. (2011). Romanian complex data center for dense seismic network. Annals of Geophysics, 9-16.

Oncescu, M. C., Trifu, C. I. (1987). Depth variation of moment tensor principal axes in Vrancea (Romania) seismic region. In Annales geophysicae. Series B. Terrestrial and planetary physics, 149-154.

Oncescu, M. C., Marza, V. I., Rizescu, M., Popa, M. (1999). The Romanian Earthquake Catalogue between 984-1996. In: Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation, Wenzel, F. and Lungu, D. (eds.) Netherlands: Kluwer Academic Publ. Dordrecht, 43–48.

P 100-1/2013. (2013). Seismic Design Code - Part I: Earthquake Resistant Design of buildings, Ministry of Regional Development and Public Administration (M.D.R.A.P.). Bucharest, Romania.

Pavel, F., Vacareanu, R., Douglas, J., Radulian, M., Cioflan, C., Barbat, A. (2015). An Updated Probabilistic Seismic Hazard Assessment for Romania and Comparison with the Approach and Outcomes of the SHARE Project. Pure and Applied Geophysics, 1881-1905.

Radulian, M., Vaccari, F., Mandrescu, N., Panza, G. F., Moldoveanu, C.L. (2000). Seismic Hazard of Romania: Deterministic Approach. In Seismic hazard of the circum-Pannonian Region, 221-247, Birkhäuser, Basel.

ROMPLUS (2019), Romanian earthquake catalogue, National Institute for Earth Physics, Magurele, Romania. URL: www.infp.ro/romplus

Rukos, E. A. (1988). The Mexico Earthquake of September 19, 1985 - Earthquake Behavior of Soft Sites in Mexico City, Earthquake Spectra, 771-786.

Seed, H. B., Murarka, R., Lysmer, J., Idriss, I. M. (1976). Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bulletin of the Seismological Society of America, 1323-1342.

Seed, H. B., Whitman, R. V., Dezfulian, H., Dobry, R., Idriss, I. M., Fuller, F. M. (1973). Soil conditions and building damage in 1967 Caracas earthquake. Journal of Geotechnical and Geoenvironmental Engineering, p. 99(sm7).

Seed, H. B., Schnabell, P. (1970). Soil and geologic effects on site response during earthquakes. Proc. Inter. Conf. Microzonation, Seattle, Washington, 61–85.

Sokolov, V., Bonjer, K. P., Wenzel, F. (2004a). Accounting for site effect in probabilistic assessment of seismic hazard for Romania and Bucharest: a case of deep seismicity in Vrancea zone. Soil Dynamics and Earthquake Engineering, 927–947.

O’Rourke, T. D., Holzer, T. L. (1992). The Loma Prieta, California, Earthquake of October 17, 1989--Marina District: Strong Ground Motion and Ground Failure. Department of the Interior, US Geological Survey, 320 p.

U.S. Atomic Energy Commission (1973). Design response spectra for seismic design of nuclear power plants. Regulatory Guide 1.60. Rev. 1, Washington, D.C.

Wald, D. J.,Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 1379–1395.

Wirth, W., Wenzel, V., Sokolov, V. Yu., Bonjer, K.-P. (2003). A uniform approach to seismic site effect analysis in Bucharest, Romania. Soil Dynamics and Earthquake Engineering, 737-758.

##submission.downloads##

Publicado

2021-07-07