Kybernetika 55 no. 5, 809-830, 2019

A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response

Yanjun Shen, Bo Yang, Xiongfeng Huang, Yujiao Zhang and Chao TanDOI: 10.14736/kyb-2019-5-0809

Abstract:

In this paper, we propose a new economic dispatch model with random wind power, demand response and carbon tax. The specific feature of the demand response model is that the consumer's electricity demand is divided into two parts: necessary part and non-essential part. The part of the consumer's participation in the demand response is the non-essential part of the electricity consumption. The optimal dispatch objective is to obtain the minimum total cost (fuel cost, random wind power cost and emission cost) and the maximum consumer's non-essential demand response benefit while satisfying some given constraints. In order to solve the optimal dispatch objective, a multi-subpopulation bat optimization algorithm (MSPBA) is proposed by using different search strategies. Finally, a case of an economic dispatch model is given to verify the feasibility and effectiveness of the established mathematical model and proposed algorithm. The economic dispatch model includes three thermal generators, two wind turbines and two consumers. The simulation results show that the proposed model can reduce the consumer's electricity demand, reduce fuel cost and reduce the impact on the environment while considering random wind energy, non-essential demand response and carbon tax. In addition, the superiority of the proposed algorithm is verified by comparing with the optimization results of CPLEX+YALMIP toolbox for MATLAB, BA, DBA and ILSSIWBA.

Keywords:

economic dispatch, non-essential demand response, random wind power, bat algorithm, multi-subpopulation

Classification:

90Bxx

References:

  1. A. Y. Abdelaziz, E. S. Ali and S. M. A. Elazim: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101 (2016), 506-518.   DOI:10.1016/j.energy.2016.02.041
  2. A. Chakri, R. Khelif, M. Benouaret and et al.: New directional bat algorithm for continuous optimization problems. Expert Systems Appl. 69 (2017), 159-175.   DOI:10.1016/j.eswa.2016.10.050
  3. C. L. Chen, V. S. Vempati and N. Aljaber: An application of genetic algorithms for flow shop problems. Europ. J. Oper. Res. 80 (1995), 389-396.   DOI:10.1016/0377-2217(93)e0228-p
  4. C. T. Cheng, S. L. Liao, Z. T. Tang and et al.: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch. Energy Conversion Management 50 (2009), 3007-3014.   DOI:10.1016/j.enconman.2009.07.020
  5. F. Chen, J. Zhou, C. Wang and et al.: A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching. Energy 121 (2017), 276-291.   DOI:10.1016/j.energy.2017.01.010
  6. S. Das and P. N. Suganthan: Differential evolution: a Survey of the State-of-the-art. IEEE Trans. Evolutionary Comput. 15 (2011), 4-31.   DOI:10.1109/tevc.2010.2059031
  7. M. Dorigo, V. Maniezzo and A. Colorni: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41.   DOI:10.1109/3477.484436
  8. M. Fahrioglu and F. L. Alvarado: Designing incentive compatible contracts for effective demand management. IEEE Trans. Power Systems 15 (2000), 1255-1260.   DOI:10.1109/59.898098
  9. M. Fahrioglu and F. L. Alvarado: Using utility information to calibrate customer demand management behavior models. IEEE Trans. Power Systems 16 (2001), 317-322.   DOI:10.1109/59.918305
  10. C. Gan, W. Cao, M. Wu and et al.: A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Systems Appl. 104 (2018), 202-212.   DOI:10.1016/j.eswa.2018.03.015
  11. A. H. Gandomi and X. S. Yang: Chaotic bat algorithm. J. Comput. Sci. 5 (2014), 224-232.   DOI:10.1016/j.jocs.2013.10.002
  12. A. H. Gandomi, X. S. Yang, A. H. Alavi and et al.: Bat algorithm for constrained optimization tasks. Neural Computing Appl. 22 (2013), 1239-1255.   DOI:10.1007/s00521-012-1028-9
  13. M. Ghasemi, S. Ghavidel, M. M. Ghanbarian and et al.: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78 (2014), 276-289.   DOI:10.1016/j.energy.2014.10.007
  14. Y. Guo, L. Tong, W. Wu and et al.: Coordinated Multi-area Economic Dispatch via Critical Region Projection. IEEE Trans. Power Systems 32 (2017), 3736-3746.   DOI:10.1109/tpwrs.2017.2655442
  15. F. Guo, C. Wen, J. Mao and et al.: Distributed economic dispatch for dmart grids with random wind power. IEEE Trans. Smart Grid 7 (2016), 1572-1583.   DOI:10.1109/tsg.2015.2434831
  16. X. S. He, W. J. Ding and X. S. Yang: Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25 (2014), 459-468.   DOI:10.1007/s00521-013-1518-4
  17. J. Hetzer, D. C. Yu and K. Bhattarai: An economic dispatch model incorporating wind power. IEEE Trans. Energy Conversion 23 (2008), 603-611.   DOI:10.1109/tec.2007.914171
  18. R. Jabr, A. H. Coonick and B. J. Cory: A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 15 (2000), 930-936.   DOI:10.1109/59.871715
  19. B. Jeddi and V. Vahidinasab: A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Conversion Management 78 (2014), 661-675.   DOI:10.1016/j.enconman.2013.11.027
  20. M. Ji and H. Tang: Application of chaos in simulated annealing. Chaos Solitons Fractals 21 (2004), 933-941.   DOI:10.1016/j.chaos.2003.12.032
  21. J. Kennedy and R. Eberhart: Particle swarm optimization. In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948.   DOI:10.1109/icnn.1995.488968
  22. K. Y. Lee, Y. M. Park and J. L. Ortiz: Fuel-cost minimisation for both real-and reactive-power dispatches. IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93.   DOI:10.1049/ip-c.1984.0012
  23. M. Li, J. Hou, Y. Niu and et al.: Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants. In: International Conference on Control and Automation, IEEE 2016, pp. 830-835.   DOI:10.1109/icca.2016.7505381
  24. H. Liang, Y. Liu, Y. Shen and et al.: A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans. Power Syst. 33 (2018), 5052-5061.   DOI:10.1109/tpwrs.2018.2812711
  25. X. Liu and W. Xu: Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans. Power Systems 25 (2010), 1705-1713.   DOI:10.1109/tpwrs.2010.2042085
  26. I. Mazhoud et al.: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism. Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273.   DOI:10.1016/j.engappai.2013.02.002
  27. N. I. Nwulu and M. Fahrioglu: A neural network model for optimal demand management contract design. In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4.   DOI:10.1109/eeeic.2011.5874776
  28. N. I. Nwulu and M. Fahrioglu: Power system demand management contract design: A comparison between game theory and artificial neural networks. Int. Rev. Modell. Simul. 4 (2011), 104-112.   CrossRef
  29. N. I. Nwulu and X. Xia: Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy 101 (2017), 16-28.   DOI:10.1016/j.renene.2016.08.026
  30. J. B. Park, K. S. Lee, J. R. Shin and et al.: A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 20 (2005), 34-42.   DOI:10.1109/tpwrs.2004.831275
  31. I. Pavlyukevich: Lévy flights, non-local search and simulated annealing. J. Comput. Physics 226 (2007), 1830-1844.   DOI:10.1109/tpwrs.2004.831275
  32. T. Sen and H. D. Mathur: A new approach to solve Economic Dispatch problem using a Hybrid ACO/ABC/HS optimization algorithm. Int. J. Electr. Power Energy Systems 78 (2016), 735-744.   DOI:10.1016/j.ijepes.2015.11.121
  33. D. C. Walters and G. B. Sheble: Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Systems 8 (1993), 1325-1332.   DOI:10.1109/59.260861
  34. A. J. Wood and B. F. Wollenberg: Power generation operation and control. Second edition. Fuel Energy Abstracts 37 (1996), 195.   DOI:10.1016/0140-6701(96)88715-7
  35. X. S. Yang: A new metaheuristic bat-inspired algorithm. Comput. Knowledge Technol. 284 (2010), 65-74.   DOI:10.1007/978-3-642-12538-6\_6
  36. X. S. Yang and S. Deb: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343.   DOI:10.1504/ijmmno.2010.035430
  37. X. Yang and A. H. Gandomi: Bat algorithm: a novel approach for global engineering optimization. Engrg. Computations 29 (2012), 464-483.   DOI:10.1108/02644401211235834
  38. H. Yang, J. Yi, J. Zhao and et al.: Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing 102 (2013), 154-162.   DOI:10.1016/j.neucom.2011.12.054
  39. F. Yao, Z. Y. Dong, K. Meng and et al.: Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia. IEEE Trans. Industr. Inform. 8 (2012), 880-888.   DOI:10.1109/tii.2012.2210431