Zusammenfassung
Die Entwicklung dezentraler Produktionssysteme und -netzwerke stellt die Produktionstechnik vor neue Herausforderungen hinsichtlich der Beherrschung der Komplexität und Realisierung einer durchgängigen Verfügbarkeit einzelner Akteure. Neben den klassischen Ansätzen der Steuerungstechnik, wie Leitsystemen, werden zunehmend auch autonome Steuerungssysteme eingesetzt, die zur Reduktion der Komplexität und Befähigung dezentraler Prozesse beitragen. Im Rahmen der Initiative Industrie 4.0 werden daher Ansätze untersucht, die digitale Abbilder mittels Verwaltungsschalen zur autonomen Entscheidungsfindung und selbstständigen Koordination befähigen. Der vorgeschlagene Ansatz kombiniert Verwaltungsschalen und Agentenarchitekturen mit dem Ziel der Erstellung autonomer Industrie 4.0-Komponenten. Das vorgestellte Konzept wird anhand typischer Anwendungsbeispiele aus der drahtlosen Gerätekommunikation in der industriellen Automatisierung und der Forstwirtschaft demonstriert. Während in der Forstwirtschaft die Dezentralität der Prozesse und Akteure, die Komplexität der Interaktionen sowie fehlende Vernetzung diese vor besondere Herausforderungen bei der Realisierung einer digitale Produktionsinfrastruktur stellt, müssen bei der Nutzung funkbasierter Kommunikation in der industriellen Automatisierung Funkressourcen, Geräteverbunde und Prozessabläufe aufeinander abgestimmt werden.
Abstract
The development of decentralized production systems and networks poses new challenges for production engineering with regard to controlling the complexity and the realization of a continuous availability of individual entities. In addition to the classic approaches in control technology, such as control systems, autonomous control systems are becoming increasingly relevant. These contribute to the reduction of complexity and enabling of decentralized processes. Thus, within the framework of the Industry 4.0 initiative, approaches are being investigated that use digital representations by means of asset administration shells for autonomous decision-making and independent coordination. The proposed approach combines asset administration shells and agent architectures with the goal of creating autonomous Industry 4.0 components. The presented concept is demonstrated using typical application examples from wireless device communication in industrial automation and forestry. While in forestry the decentralized nature of the processes and stakeholders, the complexity of the interactions, and the lack of networking pose particular challenges for the realization of a digital production infrastructure, radio resources, device networks, and process flows must be coordinated when using radio-based communication in industrial automation.
Funding statement: Die Autoren danken der Europäischen Kommission und dem Land Nordrhein-Westfalen für ihre Unterstützung durch die Finanzierung des EFRE.NRW Projektes “Kompetenzzentrum Wald und Holz 4.0” (EFRE-0200458) im Rahmen des Europäischer Fonds für regionale Entwicklung (EFRE).
Über die Autoren
Stephan Wein, M. Sc. is a research associate and consultant at the Chair of Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL), after receiving the M. Sc. degrees in mechanical engineering from the RWTH Aachen University in 2015. He was student worker from 2011 to 2015 at the Fraunhofer Institute for Laser Technology and the WZL. His expertise includes laser-welding processes, robotics, semantic modeling of industrial components for automated processes, Industry 4.0 components, autonomous systems, and architecture design for automation and control.
Yannick Dassen, M. Sc. is a research associate at the Chair of Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL), after receiving the M. Sc. degrees in mechanical engineering from the RWTH Aachen University in 2019. His research interests include the design of production systems from heterogeneous components, assistance systems, and the future role of humans in the digital factory.
Christoph Pallasch, Dipl.-Inf. is a research associate at the Chair of Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL). His expertise includes automation and control systems, wireless communication, semantic modeling, cloud computing, robotics, and microcontroller architectures.
Torben Miny, M. Sc. is a research associate at the Chair of Process Control Engineering (PLT), after receiving the M. Sc. degrees in automation engineering from the RWTH Aachen University in 2016. His expertise is in the automated exchange of information through model transformations in the environment of Industrie 4.0. In this context, he is working on the topic of asset administration shell and discovery. He is active in various working groups of the Industrie 4.0 platform as well as in the technical committees GMA 7.20 and DKE AK 931.0.14.
Simon Storms, M. Sc. is head of the department Automation and Control related to the Chair of Machine Tools at Laboratory for Machine Tools and Production Engineering (WZL) at RWTH Aachen University. He was a research associate between 2014 and 2018, after receiving his Master degree in Automation Engineering at the RWTH Aachen University. His research priorities are robotic applications, industrial communication technologies, Cloud-Computing, flexible process controls, model based engineering, and human-machine interaction.
Prof. Dr.-Ing. Christian Brecher is a full professor at RWTH Aachen University and Head of the Chair of Machine Tools at the Laboratory for Machine Tools and Production Engineering (WZL). He is a director of the institute and has published numerous papers in international journals and other scientific publications.
Literatur
1. Alam, K. M. and El Saddik, A.: C2PS – A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems. IEEE Access, 5:2050–2062, 2017.10.1109/ACCESS.2017.2657006Search in Google Scholar
2. Aktas, I., Ansari, J., Auroux, S., Parruca, D., Perez Guirao, M. D. and Holfeld, B.: A Coordination Architecture for Wireless Industrial Automation. In: European Wireless 2017; 23th European Wireless Conference. pp. 1–8, 2017.Search in Google Scholar
3. Almeida, E. E., Luntz, J. E. and Tilbury, D. M.: Event-Condition-Action Systems for Reconfigurable Logic Control. 2007 IEEE Transactions on Automation Science and Engineering, pp. 167–181, 2007.10.1109/TASE.2006.880857Search in Google Scholar
4. Belyaev, A. and Diedrich, C.: Aktive Verwaltungsschale von I4.0-Komponenten. 2019.Search in Google Scholar
5. Brecher, C., Wein, S., Xu, X., Storms, S. and Herfs, W.: Simulation Framework for Virtual Robot Programming in Reconfigurable Production Systems. In: Procedia CIRP – 7th CIRP Global Web Conference – Towards shifted production value stream patterns through inference of data, models, and technology (CIRPe 2019). volume 86, pp. 98–103, 2019.10.1016/j.procir.2020.01.045Search in Google Scholar
6. Contreras, J. D., Garcia, J. I. and Diaz, J. D.: Developing of Industry 4.0 Applications. International Journal of Online Engineering (iJOE), 13:30–49, 2017.10.3991/ijoe.v13i10.7331Search in Google Scholar
7. Christoph, P., Alexander, P., Werner, H., Anke, S. and Guido, D.: Novel approach for wireless commissioning and assisted process development based on Bluetooth Low Energy. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). volume 1, pp. 235–242, 2018.10.1109/ETFA.2018.8502455Search in Google Scholar
8. Dumitrescu, R., Gausemeier, J., Slusallek, P., Cieslik, S., Demme, G., Falkowski, T., Hoffmann, H., Kadner, S., Reinhart, F., Westermann, T. and Winter, J.: Studien zum deutschen Innovationssystem Nr. 13-2018 – Studie Autonome Systeme. 2018.10.30844/I40M_18-6_17-20Search in Google Scholar
9. Heidel, R., Hoffmeister, M., Hankel, M. and Döbrich, U.: Basiswissen RAMI 4.0: Referenzarchitekturmodell und Industrie 4.0-Komponente. Beuth, Berlin, 2017.Search in Google Scholar
10. He, J., Tang, Z., Fu, X., Leng, S., Wu, F., Huang, K., Huang, J., Zhang, J., Zhang, Y., Radford, A., Li, L. and Xiong, Z.: Cooperative Connected Autonomous Vehicles (CAV): Research, Applications and Challenges. In: 2017 IEEE 27th International Conference on Network Protocols (ICNP). pp. 1–6, 2019.10.1109/ICNP.2019.8888126Search in Google Scholar
11. Leitão, P. and Karnouskos, S.: Industrial Agents: Emerging Applications of Software Agents in Industry. 2015.10.1016/B978-0-12-800341-1.00006-1Search in Google Scholar
12. Ostrowicz, S.: Next Generation Process Automation: Integrierte Prozessautomation im Zeitalter der Digitalisierung. Ergebnisbericht Studie 2018. 2018.Search in Google Scholar
13. Palm, Florian and Epple, Ulrich: openAAS – Die offene Entwicklung der Verwaltungsschale. 2017.10.51202/9783181022931-103Search in Google Scholar
14. Plattform Industrie 4.0: Diskussionspapier – Verwaltungsschale in der Praxis: Wie definiere ich Teilmodelle, beispielhafte Teilmodelle und Interaktionen zwischen Verwaltungsschalen (Version 1.0). 2019.Search in Google Scholar
15. Rekhter, Y., Li, T. and Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271, RFC Editor, 2006. http://www.rfc-editor.org/rfc/rfc4271.txt.10.17487/rfc4271Search in Google Scholar
16. Russell, S. and Norvig, P.: Künstliche Intelligenz – Ein moderner Ansatz (3. Aufl.). Pearson Deutschland GmbH, 2012.Search in Google Scholar
17. Schröder, T. and Diedrich, C.: Systemarchitektur für die Implementierung proaktiver Verwaltungsschalen auf Basis kognitionswissenschaftlicher Konzepte. at - Automatisierungstechnik, 67:599–616, 2019.10.1515/auto-2019-0030Search in Google Scholar
18. Tang, H., Li, D., Wang, S. and Dong, Z.: CASOA: An Architecture for Agent-Based Manufacturing System in the Context of Industry 4.0. IEEE Access, 6:12746–12754, 2018.10.1109/ACCESS.2017.2758160Search in Google Scholar
19. Wassermann, E. and Fay, A.: Interoperability rules for heterogenous multi-agent systems: Levels of conceptual interoperability model applied for multi-agent systems. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). pp. 89–95, 2017.10.1109/INDIN.2017.8104752Search in Google Scholar
20. Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C. and Liu, Y.: A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges. IEEE Communications Surveys Tutorials, 21(1):393–430, 2019.10.1109/COMST.2018.2866942Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston