Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 3, 2021

Fieldswarm technology for tillage and crop care

Paradigm change in agricultural technology: Bigger, faster, wider is going to change towards smart, connected and modular

Feldschwarm Technologie für Bodenbearbeitung, Aussaat und Pflege
Paradigmenwechsel in der Landtechnik: Größer, Schneller, Breiter verändert sich zu Smart, Vernetzt und Modular
  • Thomas Herlitzius

    Thomas Herlitzius is Director of the of Institute for Natural Material Technology at Technische Universität Dresden and is heading the chair Agricultural Systems and Technology since 2007. Until 1992 Thomas was working as a Scientific Research Engineer for agricultural machines at the TU Dresden and received his PhD in 1995. He began his industrial career in 1992 joining John Deere Works at Zweibrücken as a Design Engineer followed by team leader and Manager Combine Engineering.

    ORCID logo EMAIL logo
    , Martin Hengst , Andre Grosa and Holger Fichtl

Abstract

Today agriculture equipment is characterized by a high level of productivity and automation. Tractor-implement systems establish productivity by increasing working width and higher operational speed supported by larger storage volumes and increased tractor power availability. Dimensions and weight of tractor – implement systems have become the most important limitations for further growing productivity. A trend from Bigger, Faster, Wider towards Smart, Connected and Modular is under discussion. Modular and scalable systems with a high and variable degree of autonomy have potential to deliver configuration capability regarding actual task and field conditions while providing scalability of peak performance, productivity and economy. Possible machine concepts can consist of a tractor with automated and modular process units and / or autonomous self-propelled systems working as single unit or in a fleet (swarm). Swarm operation requires an adaptive and multimodal frontend to manage and lead a heterogeneous swarm of smart process applications. The example Feldschwarm, shown in the paper, is designed to the requirements of tillage and seeding in a first step.

Zusammenfassung

Landwirtschaftliche Geräte zeichnen sich heute durch ein hohes Maß an Produktivität und Automatisierung aus. Traktor-Geräte-Systeme realisieren Produktivität durch größere Arbeitsbreite und höhere Arbeitsgeschwindigkeit, unterstützt durch größere Speichervolumina und erhöhte Traktorleistung. Abmessungen und Gewicht von Traktor-Geräte-Systemen sind inzwischen begrenzend, wenn Produktivität weiter gesteigert werden soll. Ein Trend von Größer, Schneller, Breiter hin zu Smart, Vernetzt und Modular wird sichtbar. Modulare und skalierbare Systeme mit einem hohen und variablen Grad an Autonomie haben das Potenzial, Konfigurationsfähigkeit in Bezug auf die tatsächliche Aufgabe und Feldbedingungen zu liefern und gleichzeitig Skalierbarkeit von Spitzenleistung, Produktivität und Wirtschaftlichkeit zu bieten. Neue Maschinenkonzepte können aus einem Traktor mit automatisierten und modularen Prozesseinheiten und / oder autonomen selbstfahrenden Systemen bestehen, die als Einzelgerät oder in einer Flotte (Schwarm) arbeiten. Der Schwarmbetrieb erfordert ein adaptives und multimodales Frontend, um einen heterogenen Schwarm mit verschiedenen Einzelprozessen zu verwalten und zu führen. Das Beispiel Feldschwarm, das im Beitrag gezeigt wird, ist ein erster Schritt, ausgelegt auf die Anforderungen der Bodenbearbeitung und Aussaat.

Award Identifier / Grant number: 03WKCW1

Funding statement: The project Feldschwarm is funded by the Federal Ministry for Economic Affairs and Energy (Grant No.: 03WKCW1) on the basis of the German Bundestag.

About the author

Thomas Herlitzius

Thomas Herlitzius is Director of the of Institute for Natural Material Technology at Technische Universität Dresden and is heading the chair Agricultural Systems and Technology since 2007. Until 1992 Thomas was working as a Scientific Research Engineer for agricultural machines at the TU Dresden and received his PhD in 1995. He began his industrial career in 1992 joining John Deere Works at Zweibrücken as a Design Engineer followed by team leader and Manager Combine Engineering.

References

1. B. V., M. U. (2020, December 10). Future Farming Magazine. Retrieved from Robot Catalogue: https://misset.com/robot-catalogue/.Search in Google Scholar

2. Bainbridge, L. (1983). Ironies of automation. In: J. R. G. Johannsen (Ed.) Analysis, Design and Evaluation of Man–Machine Systems (pp. 129–135).10.1016/B978-0-08-029348-6.50026-9Search in Google Scholar

3. Blackmore, S., Stout, B., Wang, M., & Runov, B. (2005). Robotic agriculture – the future of agri-cultural mechanization? In: Fifth European Conference on Precision Agriculture (pp. 621–628). Wageningen Academic Publishers, Netherlands.Search in Google Scholar

4. Brixius, W. (1987). Traction predictions equations for bias ply tires. ASAE paper 87-1622.Search in Google Scholar

5. D. Bochtis, et al. (2012, April). A DSS for planning of soil-sensitive field operations. Decision Support Systems, 53(1), 66–75.10.1016/j.dss.2011.12.005Search in Google Scholar

6. de Witte, T. (2019). Wirtschaftliche Perspektiven autonomer Kleinmaschinen im Ackerbau. Journal für Kulturpflanzen, 71(4), 95–100.Search in Google Scholar

7. Hertzberg, J. (2018). Robotik im Ackerbau. In: Landwirtschaft und Digitalisierung. 27. Hülsenberger Gespräche 11. bis 13. Juni 2018 (pp. 44–48). Wilhelm Schaumann Stiftung, Hamburg.Search in Google Scholar

8. Kalyuga, S. (2009). Instructional designs for the development of transferable knowledge and skills: A cognitive load perspective. Computers in Human Behavior, 25(2), 332–338.10.1016/j.chb.2008.12.019Search in Google Scholar

9. Kester, C. G. (2013). A survey on future farm automation – a descriptive analysis of survey responses. In: 9th European Conference on Precision Agriculture (pp. 785–792).Search in Google Scholar

10. Kirschner, P. A. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48(3), 169–183.10.1080/00461520.2013.804395Search in Google Scholar

11. Lewis, T. (1998, March). Evolution of farm management information systems. Computers and Electronics in Agriculture, 19, 233–248.10.1016/S0168-1699(97)00040-9Search in Google Scholar

12. Lorenz, S., Krzywinski, J., & Schreiber, C. (2019). Feldschwarm-HMI – a semistationary user interface for operating and monitoring highly automated systems. In: 77th International Conference on Agricultural Engineering, Hanover.Search in Google Scholar

13. Nitzsche, G., Wagner, S., & Belov, N. (June 4–5, 2019). helyOS – highly efficient online yard operating system. In: International Conference Commercial Vehicles 2019: Truck, Bus, Van, Trailer, Baden-Baden, VDI Berichte, 2350.10.51202/9783181023501-329Search in Google Scholar

14. P. Weisskopf, et al. (2010). Effect of different compaction impacts and varying subsequent management practices on soil structure, air regime and microbiological parameters. Soil and Tillage Research 111, 65–74.10.1016/j.still.2010.08.007Search in Google Scholar

15. Pfaffmann, S., Tarasinski, N., & de Moraes Boos, F. (2019). Development of a fully electric agricultural machine with external power supply. In: 7th International Conference on Agricultural Engineering. VDI, Hanover.10.51202/9783181023617-401Search in Google Scholar

16. Pickel, P. (2018). Insights from the corporate world – Innovation Trend “Smart Farming”. In: Hülsenberger Gespräche. H. Wilhelm Schaumann Stiftung, Hamburg.Search in Google Scholar

17. Ruckelshausen, A. (2010). Autonome Feldroboter. In: KTLB-Schrift 480 (pp. 146–155).Search in Google Scholar

18. Wegener, J. K., Urso, L. M., von Hörsten, D., & Hegewald, H. (2019). Spot farming – an alternative for future plant production. Journal für Kulturpflanzen 71 (4), 70–89.Search in Google Scholar

Received: 2020-08-04
Accepted: 2021-01-28
Published Online: 2021-04-03
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0127/html
Scroll to top button