Abstract
The most cost-effective method to improve the damping of low frequency electromechanical oscillations in interconnected power systems is the use of Power System Stabilizers (PSS), which act as supplementary controllers in the generator excitation system. In general, the performance of a power system stabilizer depends on the proper tuning of its parameters, to ensure a positive contribution to the small signal stability of the power system, without negatively impacting its transient stability. This paper will discuss the different roles of the excitation system automatic voltage regulator and the power system stabilizer in improving the transient stability and the oscillatory stability of the power system. The focus of the paper will be on the tuning methodology for power system stabilizers, which can ensure a robust performance of the PSS over a wide range of frequencies and operating conditions. In addition, mathematical optimization techniques will be introduced into the tuning process to improve the efficiency and accuracy of the tuning process.
Zusammenfassung
Die kostengünstigste Methode zur Verbesserung der Dämpfung niederfrequenter elektromechanischer Schwingungen in Verbundnetzen ist die Verwendung von Pendeldämpfungsgeräten (Power System Stabilizers - PSS), die als zusätzliche Regler im Erregungssystem der Generatoren fungieren. Im Allgemeinen hängt die Leistung eines Pendeldämpfungsgeräts von der richtigen Einstellung seiner Parameter ab, um einen positiven Beitrag zur Kleinsignalstabilität des Stromversorgungssystems zu gewährleisten, ohne dessen transiente Stabilität negativ zu beeinflussen. In diesem Artikel werden die verschiedenen Rollen des Erregungssystems, des automatischen Spannungsreglers (AVR) und des Pendeldämpfungsgeräts (PSS) bei der Verbesserung der Übergangsstabilität und der Pendelstabilität des Stromversorgungssystems erörtert. Der Schwerpunkt des Aufsatzes wird auf der Einstellungsmethode für Pendeldämpfungsgeräten liegen, die eine robuste Leistung des PSS über einen weiten Bereich von Frequenzen und Betriebsbedingungen gewährleisten kann. Zusätzlich werden mathematische Optimierungstechniken in den Einstellungsprozess eingeführt, um die Effizienz und Genauigkeit des Einstellungsprozesses zu verbessern.
About the author
Ara Panosyan received Dipl.-Ing. and Dr.-Ing. degrees in electric power systems from the University of Hannover in 2002 and 2010 respectively. He is Senior Key Expert for Power System Dynamics at Siemens PTI. He has over 15 years of experience in various aspects of dynamics and stability of conventional and power-electronics-based power generation and transmission systems, and in the development of advanced modelling and simulation tools and techniques. He has 24 granted patents and numerous publications in the field of power systems.
References
1. M. J. Basler and R. C. Schaefer, “Understanding Power-System Stability,” IEEE Transactions on Industry Applications, vol. 44, no. 2, 2008.10.1109/TIA.2008.916726Search in Google Scholar
2. B. Pal and B. Chaudhuri, Robust Control in Power Systems, Springer, 2005.Search in Google Scholar
3. P. Kundur, Power System Stability and Control, McGraw-Hill, 1994.Search in Google Scholar
4. W. G. Heffron and R. A. Phillips, “Effect of a Modern Amplidyne Voltage Regulator on Underexcited Operation of Large Turbine Generators,” AIEE Trans., vol. PAS-71, pp. 692–697, 1952.10.1109/AIEEPAS.1952.4498530Search in Google Scholar
5. E. Sorrentino and F. Leon, “Comparison among typical input signals of different types of Power System Stabilizers (PSS),” in 2020 IEEE ANDESCON, pp. 1–6, 2020.10.1109/ANDESCON50619.2020.9272090Search in Google Scholar
6. G. Berube, L. Hajagos and R. Beaulieu, “Practical Utility Experience with Application of Power System Stabilizers,” in 199 IEEE Power Engineering Society Summer Meeting, 1999.Search in Google Scholar
7. M. Gibbard, P. Pourbeik and D. Vowles, Small-Signal Stability, Control and Dynamic Performance of Power Systems, University of Adelaide Press, 2015.10.20851/small-signalSearch in Google Scholar
8. M. Gibbard, Q. Zhang and D. Vowles, “Electric Power PSS with Ramp-Rejection,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4495–4504, 2020.10.1109/TPWRS.2020.2995587Search in Google Scholar
9. E. V. Larsen and D. A. Swann, “Applying Power System Stabilizers – Part I: General Concepts,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 6, pp. 3017–3024, 1981.10.1109/TPAS.1981.316355Search in Google Scholar
10. E. V. Larsen and D. A. Swann, “Applying Power System Stabilizers – Part II: Performance Objectives and Tuning Concepts,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 6, pp. 3025–3033, 1981.10.1109/TPAS.1981.316410Search in Google Scholar
11. E. V. Larsen and D. A. Swann, “Applying Power System Stabilizers – Part III: Practical Considerations,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 6, pp. 3034–3046, 1981.10.1109/TPAS.1981.316411Search in Google Scholar
12. J. H. Chow and J. Sanchez-Gasca, Power System Modeling, Computation, and Control, Wiley-IEEE Press, 2019.10.1002/9781119546924Search in Google Scholar
13. WECC, “WECC Power System Stabilizer Tuning Guidelines,” [Online]. Available: https://www.wecc.org/Reliability/Power System Stabilizer Tuning Guidelines.pdf.Search in Google Scholar
14. S. PTI, “PSS/E 34 Program Operation Manual (POM).”Search in Google Scholar
15. N. Nikolaev, Y. Rangelov, A. Panosyan and N. T. Trinh, “PSS/E Based Power System Stabilizer Tuning Tool,” in 21st International Symposium on Electrical Apparatus & Technologies, 2020.10.1109/SIELA49118.2020.9167137Search in Google Scholar
16. I. Kamwa, R. Grondin and G. Trudel, “IEEE PSS2B versus PSS4B: The Limits of Performance of Modern Power System Stabilizers,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 903–915, 2005.10.1109/TPWRS.2005.846197Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston