Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 1, 2021

Model-based control of wind turbines for active power control

A unified sector-nonlinearity approach based on Takagi-Sugeno modeling

Modellbasierter Reglerentwurf zur aktiven Leistungsregelung von Windturbinen
Ein generalisierter Ansatz basierend auf Sektornichtlinearitäten mittels Takagi-Sugeno Formulierung
  • Florian Pöschke

    Florian Pöschke is a research associate in the Control Engineering Group at the Department of Engineering I (Energy and Information), University of Applied Sciences Berlin (HTW). His research topics are: Modeling and Control of Nonlinear Dynamical Systems using Polytopic State-space Models (Takagi-Sugeno fuzzy systems, quasi-LPV systems); Model-based Control of Wind turbines, Wind farms and Electrical power systems.

    and Horst Schulte

    Horst Schulte is the head of the Control Engineering Group at the Department of Engineering I (Energy and Information), University of Applied Sciences Berlin (HTW). His research topics are Computational Intelligence in Automatic Control; Modeling, Stability Analysis and Control of Nonlinear Dynamic Systems; Robust and Fault-tolerant Control; Applications in Wind Energy, PV Systems, Electric Power Systems, and Electromobility.

    EMAIL logo

Abstract

This paper addresses the model-based control design of wind turbines using the sector-nonlinearity approach. Building on the Takagi-Sugeno framework, this approach introduces an exact representation of the underlying nonlinear dynamics into the control design. The unified wind turbine control design followed in this study addresses both established (power optimization in the partial load and power limitation in the full-load region) and further requirements for wind turbine systems. An important control objective for wind turbines is the ability to support grid operators with frequency control. To achieve this, an active power control scheme is inherited in the design model such that changes in the power generation can be balanced and the grid frequency may be controlled. First, the derivation of models designed to achieve the multiple control objectives is presented in detail. After that, a unified synthesis procedure based on linear matrix inequalities is discussed and applied. Finally, the quality of the design process is evaluated through simulation studies for representative scenarios.

Zusammenfassung

Dieser Beitrag befasst sich mit dem modellbasierten Regelungsentwurf für Windturbinen mithilfe des Ansatzes der Sektornichtlinearitäten. Basierend auf einer Takagi-Sugeno Formulierung erlaubt diese Methode eine exakte Beschreibung der unterliegenden nichtlinearen Modellierung in den Regelungsentwurf einzubringen. Das Regelungskonzept umfasst dabei die üblichen Entwurfsziele, d. h. Leistungsoptimierung im Teillast- sowie Leistungsbegrenzung im Volllastbereich als auch weiterführende Anforderungen zur Frequenzregelung des elektrischen Netzes. Diese stellt eine wichtige Eigenschaft zur Einbettung von Windenergieanlagen in das Energiesystem dar. Um diese Funktionalität zu realisieren, wird die aktive Leistungsregelung im Entwurfsmodell berücksichtigt. Damit ist, mit dem Ziel die Netzfrequenz zu stabilisieren, die Möglichkeit zur Leistungsanpassung bei Laständerungen im elektrischen Netz gegeben. In diesem Beitrag wird im Detail auf die Erstellung von geeigneten Entwurfsmodellen unter Berücksichtigung der gestellten Anforderungen eingegangen. Anschließend wird der generalisierte Entwurf, basierend auf linearen Matrix Ungleichungen, diskutiert und auf das Regelungsproblem angewandt. Den Abschluss bildet die Evaluierung des Reglers mithilfe von Simulationsstudien in repräsentativen Szenarien.

Award Identifier / Grant number: 883985

Funding statement: This research is part of the project EU-Project POSYTYF (POwering SYstem flexibiliTY in the Future through RES), https://posytyf-h2020.eu. The POSYTYF project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 883985.

About the authors

M. Eng. Florian Pöschke

Florian Pöschke is a research associate in the Control Engineering Group at the Department of Engineering I (Energy and Information), University of Applied Sciences Berlin (HTW). His research topics are: Modeling and Control of Nonlinear Dynamical Systems using Polytopic State-space Models (Takagi-Sugeno fuzzy systems, quasi-LPV systems); Model-based Control of Wind turbines, Wind farms and Electrical power systems.

Prof. Dr.-Ing. Horst Schulte

Horst Schulte is the head of the Control Engineering Group at the Department of Engineering I (Energy and Information), University of Applied Sciences Berlin (HTW). His research topics are Computational Intelligence in Automatic Control; Modeling, Stability Analysis and Control of Nonlinear Dynamic Systems; Robust and Fault-tolerant Control; Applications in Wind Energy, PV Systems, Electric Power Systems, and Electromobility.

Appendix A Model parameters

Table 1

Rated values of 5MW NREL Wind Turbine [16].

Symbol Value Unit
λ rated 7.0895
ω r , rated 12.1 · π / 30 = 1.2671 rad s
ω g , rated 12.1 · n g · π / 30 = 122.9096 rad s
T g , rated 4.30935 · 10 4 Nm
P r , rated 5.296610 · 10 6 W
v rated 11.26 m/s
Table 2

Parameters of 5MW NREL Wind Turbine adapted to control-oriented models [8].

Symbol Value Unit
ρ 1.225 kg / m 3
τ β 0.1 s
τ v 4 s
d T 70000 Ns / m
J g 534.1 kg m 2
J r 38759.227 · 10 3 kg m 2
k T 1981900 N / m
m blade 17740 kg
m nacelle 240000 kg
m rotor 110000 kg
m tower 347640 kg
m T 436865 kg
n g 97
R 63 m

Analytical function of c Q λ curve

c Q λ , β = c ˜ Q λ , β 1 + sgn c ˜ Q λ , β 2 .

The coefficients c i were published in [8] and determined by fitting the c i parameters of the tailored function (18) to the values of c Q obtained from FAST/AeroDyn simulations of the 5 MW turbine. The following values were obtained:

c 1 = 0.005 c 2 = 1.53 c 3 = 0.5 c 4 = 0.18 c 5 = 121 c 6 = 27.9 c 7 = 198 c 8 = 2.36 c 9 = 5.74 c 10 = 11.35 c 11 = 16.1 c 12 = 201 .

References

1. E. A. Bossanyi. The design of closed loop controllers for wind turbines. Wind Energy, 3(3):149–163, 2000.10.2514/6.2000-27Search in Google Scholar

2. S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.10.1137/1.9781611970777Search in Google Scholar

3. M. Chilali and P. Gahinet. H design with pole placement constraints: An LMI approach. IEEE Transactions on Automatic Control, 41(3):358–367, 1996.10.1109/9.486637Search in Google Scholar

4. T. Ekelund. Modeling and Linear Quadratic Optimal Control of Wind Turbines. PhD thesis, Chalmers University of Technology, 1997.Search in Google Scholar

5. P. A. Fleming, J. Aho, A. Buckspan, E. Ela, Y. Zhang, V. Gevorgian, A. Scholbrock, L. Pao and R. Damiani. Effects of power reserve control on wind turbine structural loading. Wind Energy, 19(3):453–469, 2016.10.1002/we.1844Search in Google Scholar

6. R. Gasch and J. Twele, editors. Wind Power Plants. Springer-Verlag New York, 2012.10.1007/978-3-642-22938-1Search in Google Scholar

7. E. Gauterin, P. Kammerer, M. Kühn and H. Schulte. Effective wind speed estimation: Comparison between Kalman filter and Takagi-Sugeno observer techniques. ISA Transactions, 62:60–72, (2016).10.1016/j.isatra.2015.11.016Search in Google Scholar PubMed

8. S. Georg. Fault diagnosis and fault-tolerant control of wind turbines - Nonlinear Takagi-Sugeno and sliding mode techniques. PhD thesis, HTW Berlin, Control Engineering Group / University Rostock, Fakultät für Maschinenbau und Schiffstechnik, 2015.Search in Google Scholar

9. S. Georg, M. Müller and H. Schulte. Wind Turbine Model and Observer in Takagi-Sugeno Model Structure. In EAWE Conference ‘The Science of Making Torque from Wind’, Oldenburg, October 2012. IOP Journal of Physics: Conference Series (JPCS).Search in Google Scholar

10. S. Georg, H. Schulte and H. Aschemann. Control-Oriented Modelling of Wind Turbines Using a Takagi-Sugeno Model Structure. In IEEE International Conference on Fuzzy Systems, pages 1737–1744, Brisbane, Australia, 2012.10.1109/FUZZ-IEEE.2012.6251302Search in Google Scholar

11. M. Geyler and P. Caselitz. Lastreduzierende Pitchregelung für Windenergieanlagen (Load Reducing Pitch Control for Wind Turbines). at - Automatisierungstechnik, 56(12):627–635, 2008.10.1524/auto.2008.0741Search in Google Scholar

12. M. O. L. Hansen. Aerodynamics of Wind Turbines, 2 edition. Earthscan, 2008.Search in Google Scholar

13. L. C. Henriksen, M. H. Hansen and N. K. Poulsen. A simplified dynamic inflow model and its effect on the performance of free mean wind speed estimation. Wind Energy, 16(8):1213–1224, 2013.10.1002/we.1548Search in Google Scholar

14. F. A. Inthamoussou, H. D. Battista and R. J.Mantz. LPV-based active power control of wind turbines covering the complete wind speed range. Renewable Energy, 99:996–1007, December 2016.10.1016/j.renene.2016.07.064Search in Google Scholar

15. J. Jonkman. FAST, https://www.nrel.gov/wind/nwtc/fast.html, accessed 17-October-2020. Technical report, NREL, 2020.Search in Google Scholar

16. J. Jonkman, S. Butterfield, W. Musial and G. Scott. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical report, NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, Colorado, 2009.10.2172/947422Search in Google Scholar

17. J. M. Jonkman, J. R. Buhl and L. Marshall. FAST User’s Guide.Search in Google Scholar

18. N. Kelley and B. Jonkman. Nwtc computer-aided engineering tools. Technical report, National Renewable Energy Laboratory (NREL), 2012.Search in Google Scholar

19. B. Kosko. Fuzzy systems as universal approximators. IEEE Transactions on Computers, 43(11):1329–1333, Nov 1994.10.1109/FUZZY.1992.258720Search in Google Scholar

20. Z. Lendek, T. M. Guerra, R. Babuška and B. de Schutter. Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Springer-Verlag Berlin Heidelberg, 2010.10.1007/978-3-642-16776-8Search in Google Scholar

21. P. Li, W. Hu, R. Hu, Q. Huang, J. Yao and Z. Chen. Strategy for wind power plant contribution to frequency control under variable wind speed. Renewable Energy, 130:1226–1236, 2019.10.1016/j.renene.2017.12.046Search in Google Scholar

22. Y. Liu, Y. Wang, X. Wang, J. Zhu and W. H. Lio. Active power dispatch for supporting grid frequency regulation in wind farms considering fatigue load. Energies, 12(8), 2019.10.3390/en12081508Search in Google Scholar

23. A. M. Lyapunov. The general problem of the stability of motion. International Journal of Control, 55(3):531–773, 1992.10.1080/00207179208934253Search in Google Scholar

24. E. H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1–13, January 1975.10.1016/B978-1-4832-1450-4.50032-8Search in Google Scholar

25. A.-T. Nguyen, T. Taniguchi, L. Eciolaza, V. Campos, R. Palhares and M. Sugeno. Fuzzy control systems: Past, present and future. IEEE Computational Intelligence Magazine, 14(1):56–68, February 2019.10.1109/MCI.2018.2881644Search in Google Scholar

26. P. F. Odgaard, J. Stoustrup and M. Kinnaert. Fault tolerant control of wind turbines – a benchmark model. IFAC Proceedings Volumes, 42(8):155–160, 2009. 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.10.3182/20090630-4-ES-2003.00026Search in Google Scholar

27. H. Ohtake, K. Tanaka and H. O. Wang. Fuzzy Modeling via Sector Nonlinearity Concept. In Joint 9th IFSA World Congress and 20th NAFIPS International Conference, pages 127–132, Vancouver, Canada, 2001.10.1109/NAFIPS.2001.944239Search in Google Scholar

28. K. Z. Ostergaard, J. Stoustrup and P. Brath. Linear parameter varying control of wind turbines covering both partial load and full load conditions. International Journal of Robust and Nonlinear Control, 19(1):92–116, 2009.10.1002/rnc.1340Search in Google Scholar

29. E. Palacios and A. Titli. Pole placement in LMI region with Takagi-Sugeno fuzzy systems. In IFAC Proceedings Volumes, 5th IFAC International Symposium on Intelligent Components and Instruments for Control Applications, volume 36, pages 243–248, Aveiro, Portugal, July 2003.10.1016/S1474-6670(17)32542-9Search in Google Scholar

30. F. Pöschke, J. Fortmann and H. Schulte. Nonlinear Wind Turbine Controller for Variable Power Generation in Full Load Region. In American Control Conference, pages 1395–1400, Sheraton Hotel, Seattle, USA, 2017.10.23919/ACC.2017.7963148Search in Google Scholar

31. F. Pöschke, E. Gauterin, M. Kühn, J. Fortmann and H. Schulte. Load mitigation and power tracking capability for wind turbines using linear matrix inequality-based control design. Wind Energy, 23(9):1792–1809, September 2020.10.1002/we.2516Search in Google Scholar

32. F. Pöschke, E. Gauterin and H. Schulte. LMI Region-based Non-linear Disturbance Observer with Application to Robust Wind Turbine Control. In New Trends in Observer-based Control, pages 35–75. Academic Press, August 2019.10.1016/B978-0-12-817034-2.00015-0Search in Google Scholar

33. D. Schlipf and P. W. Cheng. Adaptive Vorsteuerung für Windenergieanlagen. at - Automatisierungstechnik, 66(5):329–338, 2013.10.1524/auto.2013.0029Search in Google Scholar

34. E. Simley, L. Y. Pao, R. Frehlich, B. Jonkman and N. Kelley. Analysis of light detection and ranging wind speed measurements for wind turbine control. Wind Energy, 17(3):413–433, March 2014.10.1002/we.1584Search in Google Scholar

35. J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625–653, 1999.10.1080/10556789908805766Search in Google Scholar

36. T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1):116–132, 1985.10.1016/B978-1-4832-1450-4.50045-6Search in Google Scholar

37. E. L. van der Hooft and T. G. van Engelen. Estimated Wind Speed Feed Forward Control for Wind Turbine Operation Optimisation. In European Wind Energy Conference, 2004.Search in Google Scholar

38. H. O. Wang, K. Tanaka and M. F. Griffin. Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model. In Proceedings of FUZZ IEEE/IFES’95, pages 531–538, 1995.10.1109/FUZZY.1995.409737Search in Google Scholar

Received: 2021-02-21
Accepted: 2021-08-24
Published Online: 2021-10-01
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.11.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2021-0047/html
Scroll to top button