Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 5, 2023

Convergence of the Incremental Projection Method Using Conforming Approximations

  • Robert Eymard and David Maltese ORCID logo EMAIL logo

Abstract

We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier–Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretized in conforming spaces, whose compatibility is ensured by the existence of an interpolator for regular functions which preserves approximate divergence-free properties. Owing to a priori estimates, we get the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the lowest degree Taylor–Hood finite element.

MSC 2010: 35Q30; 65M08; 65N12; 76M12

References

[1] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), no. 2, 211–224. 10.1007/BF01399555Search in Google Scholar

[2] D. Boffi, Stability of higher order triangular Hood–Taylor methods for the stationary Stokes equations, Math. Models Methods Appl. Sci. 4 (1994), no. 2, 223–235. 10.1142/S0218202594000133Search in Google Scholar

[3] J. M. Boland and R. A. Nicolaides, Stable and semistable low order finite elements for viscous flows, SIAM J. Numer. Anal. 22 (1985), no. 3, 474–492. 10.1137/0722028Search in Google Scholar

[4] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2013. 10.1007/978-1-4614-5975-0Search in Google Scholar

[5] F. Brezzi and R. S. Falk, Stability of higher-order Hood–Taylor methods, SIAM J. Numer. Anal. 28 (1991), no. 3, 581–590. 10.1137/0728032Search in Google Scholar

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. 10.1007/978-1-4612-3172-1Search in Google Scholar

[7] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. 10.1002/cpa.3160350604Search in Google Scholar

[8] L. Chen, A simple construction of a Fortin operator for the two dimensional Taylor–Hood element, Comput. Math. Appl. 68 (2014), no. 10, 1368–1373. 10.1016/j.camwa.2014.09.003Search in Google Scholar

[9] A. J. Chorin, On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comp. 23 (1969), 341–353. 10.1090/S0025-5718-1969-0242393-5Search in Google Scholar

[10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978. 10.1115/1.3424474Search in Google Scholar

[11] L. Diening, J. Storn and T. Tscherpel, Fortin operator for the Taylor–Hood element, Numer. Math. 150 (2022), no. 2, 671–689. 10.1007/s00211-021-01260-1Search in Google Scholar

[12] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. 10.1051/m2an/2016066Search in Google Scholar

[13] A. Ern and J.-L. Guermond, Finite Elements I—Approximation and Interpolation, Texts Appl. Math. 72, Springer, Cham, 2021. 10.1007/978-3-030-56341-7Search in Google Scholar

[14] R. S. Falk, A Fortin operator for two-dimensional Taylor–Hood elements, M2AN Math. Model. Numer. Anal. 42 (2008), no. 3, 411–424. 10.1051/m2an:2008008Search in Google Scholar

[15] E. Fernández-Cara and I. Marín-Gayte, A new proof of the existence of suitable weak solutions and other remarks for the Navier–Stokes equations, Appl. Math. 9 (2018), 383–402. 10.4236/am.2018.94029Search in Google Scholar

[16] T. Gallouët and R. Herbin, Equations aux dérivées partielles, preprint (2015), https://hal.science/cel-01196782. Search in Google Scholar

[17] T. Gallouët, R. Herbin and J.-C. Latché, W 1 , q stability of the Fortin operator for the MAC scheme, Calcolo 49 (2012), no. 1, 63–71. 10.1007/s10092-011-0045-xSearch in Google Scholar

[18] T. Gallouët, R. Herbin, J. C. Latché and D. Maltese, Convergence of the fully discrete incremental projection scheme for incompressible flows, J. Math. Fluid Mech. 25 (2023), no. 3, Paper No. 63. 10.1007/s00021-023-00810-xSearch in Google Scholar

[19] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput. Phys. 30 (1979), 76–95. 10.1016/0021-9991(79)90088-3Search in Google Scholar

[20] J.-L. Guermond, Some implementations of projection methods for Navier–Stokes equations, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 5, 637–667. 10.1051/m2an/1996300506371Search in Google Scholar

[21] J.-L. Guermond, Faedo–Galerkin weak solutions of the Navier–Stokes equations with Dirichlet boundary conditions are suitable, J. Math. Pures Appl. (9) 88 (2007), no. 1, 87–106. 10.1016/j.matpur.2007.04.009Search in Google Scholar

[22] J. L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44–47, 6011–6045. 10.1016/j.cma.2005.10.010Search in Google Scholar

[23] J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection FEM, J. Comput. Phys. 132 (1997), no. 1, 12–33. 10.1006/jcph.1996.5587Search in Google Scholar

[24] J.-L. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, Internat. J. Numer. Methods Fluids 26 (1998), no. 9, 1039–1053. 10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-USearch in Google Scholar

[25] J.-L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier–Stokes equations by finite element projection methods, Numer. Math. 80 (1998), no. 2, 207–238. 10.1007/s002110050366Search in Google Scholar

[26] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965), no. 12, 2182–2189. 10.1063/1.1761178Search in Google Scholar

[27] H. Kuroki and K. Soga, On convergence of Chorin’s projection method to a Leray-Hopf weak solution, Numer. Math. 146 (2020), no. 2, 401–433. 10.1007/s00211-020-01144-wSearch in Google Scholar

[28] J. Leray, Essai sur les mouvements plans d’un fluide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331–418. Search in Google Scholar

[29] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Search in Google Scholar

[30] K.-A. Mardal, J. Schöberl and R. Winther, A uniformly stable Fortin operator for the Taylor–Hood element, Numer. Math. 123 (2013), no. 3, 537–551. 10.1007/s00211-012-0492-6Search in Google Scholar

[31] R. Rannacher, On Chorin’s projection method for the incompressible Navier–Stokes equations, The Navier–Stokes Equations II—Theory and Numerical Methods (Oberwolfach 1991), Lecture Notes in Math. 1530, Springer, Berlin (1992), 167–183. 10.1007/BFb0090341Search in Google Scholar

[32] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. 10.1090/S0025-5718-1990-1011446-7Search in Google Scholar

[33] J. Shen, On error estimates of projection methods for Navier–Stokes equations: First-order schemes, SIAM J. Numer. Anal. 29 (1992), no. 1, 57–77. 10.1137/0729004Search in Google Scholar

[34] J. Shen, Remarks on the pressure error estimates for the projection methods, Numer. Math. 67 (1994), no. 4, 513–520. 10.1007/s002110050042Search in Google Scholar

[35] H. Sohr, The Navier–Stokes Equations, Mod. Birkhäuser Class., Birkhäuser/Springer, Basel, 2001. 10.1007/978-3-0348-8255-2Search in Google Scholar

[36] R. Stenberg, Analysis of mixed finite elements methods for the Stokes problem: A unified approach, Math. Comp. 42 (1984), no. 165, 9–23. 10.1090/S0025-5718-1984-0725982-9Search in Google Scholar

[37] R. Témam, Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II, Arch. Ration. Mech. Anal. 33 (1969), 377–385. 10.1007/BF00247696Search in Google Scholar

[38] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 870–891. 10.1137/0907059Search in Google Scholar

Received: 2023-02-10
Revised: 2023-06-29
Accepted: 2023-08-25
Published Online: 2023-10-05
Published in Print: 2024-07-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.12.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2023-0038/html
Scroll to top button