An Effect of User Experience on A Data-Driven Fuzzy Inference of Web Service Quality
DOI:
https://doi.org/10.15837/ijccc.2023.4.5162Keywords:
web service, fuzzy prediction, quality of service, quality of experience, ANFISAbstract
Today, various stakeholders provide a large number of functionally similarWeb Services (WS) to meet increasingly complex business needs. Therefore, to distinguish similar WS, some researchers have proposed using the non-functional characteristics, named Quality of Service (QoS), and user’s needs, expressed through Quality of Experience (QoE). Thus, all those QoS and QoE attributes should be taken into account in predicting WS quality jointly, called WS QoSE (Quality of Service and Experience). However, these attributes are different in nature, i.e., QoS is data-driven and numerical, while QoE is expert-based and linguistic. Consequently, to predict WS QoSE, in this paper, we propose a hybrid fuzzy inference approach, composing both quantitative and qualitative data inputs into WS QoSE output by applying the adaptive neuro-fuzzy inference system (ANFIS). The developed prototype allows us to implement the proposed approach, investigate its performance, and study the effect of QoE attributes on WS QoSE. The results of the two experiments show good performance and suitability of the proposed hybrid fuzzy inference approach for predicting WS QoSE based on combining QoS and QoE attributes. We expect that those results inspire researchers and practitioners to understand the WS QoSE better and develop user needs matching WS.References
Adeli S.; Moradi P. (2020). QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering, Journal of AI and Data Mining, 8(1), 83-93, 2020.
Al-Masri E. (2020). QWS Dataset, [Online]. Available: https://qwsdata.github.io/, Accessed on 10 September 2022.
Amazon Customer Reviews Dataset. [Online]. Available: https://s3.amazonaws.com/amazonreviews- pds/readme.html, Accessed on 28 November 2022.
Anithadevi N.; Sundarambal M. (2019). A design of intelligent QoS aware web service recommendation system, Cluster Computing, 22(Suppl 6), 14231--14240, 2019.
https://doi.org/10.1007/s10586-018-2279-8
Bekkouche A.; Benslimane S.M.; Huchard M.; et al. (2017). QoS-aware optimal and automated semantic web service composition with user's constraints, Service Oriented Computing and Applications, 11, 183-201, 2017.
https://doi.org/10.1007/s11761-017-0205-1
Ben Letaifa A. (2019). WBQoEMS: Web browsing QoE monitoring system based on prediction algorithms, International Journal of Communication Systems, 32(13): e4007, 2019.
https://doi.org/10.1002/dac.4007
Bu H.; Xia J.; Wu Q.; et al. (2022). Relationship Discovery and Hierarchical Embedding for Web Service Quality Prediction, Computational Intelligence and Neuroscience, 22, 1-16, 2022.
https://doi.org/10.1155/2022/9240843
Chakraverty S.; Sahoo D.M.; Mahato N.R. (2019). Defuzzification, Concepts of Soft Computing, Springer, 117-127, 2019.
https://doi.org/10.1007/978-981-13-7430-2_7
Chicco D.; Warrens M.J.; Jurman G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 7, 1-24, 2021.
https://doi.org/10.7717/peerj-cs.623
Choi B.I.; Rhee F.C.-H. (2009). Interval type-2 fuzzy membership function generation methods for pattern recognition, Information Sciences, 179(13), 2102-2122, 2009.
https://doi.org/10.1016/j.ins.2008.04.009
Cremene M.; Suciu M.; Pallez D.; et al. (2016). Comparative analysis of multi-objective evolutionary algorithms for QoS-aware web service composition, Applied Soft Computing, 39, 124-139, 2016.
https://doi.org/10.1016/j.asoc.2015.11.012
Ding L.; Liu J.; Kang G.; et al. (2023). Joint QoS Prediction for Web Services based on Deep Fusion of Features, IEEE Transactions on Network and Service Management, 1-13, 2020.
https://doi.org/10.1109/TNSM.2023.3255253
Ďuračiová R.; Rášová A.; Lieskovský T. (2017). Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS, Reports on Geodesy and Geoinformatics, 104(1), 115-130, 2017.
https://doi.org/10.1515/rgg-2017-0020
Dvořák A. (1999). On linguistic approximation in the frame of fuzzy logic deduction, Soft Cumputing, 3, 111-116, 1999.
https://doi.org/10.1007/PL00009887
Galindo J. (2008). Handbook of Research on Fuzzy Information Processing in Databases, IGI Global. Information Science Reference. Hershey, New York, 2008.
https://doi.org/10.4018/978-1-59904-853-6
Ghafouri H.; Hashemi M.; Hung P.C.K. (2020). A survey on web service QoS prediction methods, IEEE Transactions on Services Computing, July-August, 1st, 2022, 15, 2439-2454, 2022.
https://doi.org/10.1109/TSC.2020.2980793
Ghafouri S.H., Hashemi S.M., Razzazi M.R., et al. (2021).Web service quality of service prediction via regional reputation-based matrix factorization, Computational Intelligence and Neuroscience, 33(17): e6318, 2021.
https://doi.org/10.1002/cpe.6318
Hussain W.; Gao H.; Raza M.R.; et al. (2022). Assessing cloud QoS predictions using OWA in neural network methods, Neural Computing and Applications, 34, 14895-14912, 2020.
https://doi.org/10.1007/s00521-022-07297-z
Jadhav A.;Pramod D.;Ramanathan K. (2019). Comparison of Performance of Data Imputation Methods for Numeric Dataset, Applied Artificial Intelligence, 33(1), 1-21, 2019.
https://doi.org/10.1080/08839514.2019.1637138
Jang J.S. (1993). ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685, 1993.
https://doi.org/10.1109/21.256541
Jhaveri S.; Soundalgekar P.M.; George K.; et al. (2018). A QoS and QoE based integrated model for bidirectional web service recommendation, 2018 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC), 1-6, 2018.
https://doi.org/10.23919/PNC.2018.8579474
Kalibatiene D.; Miliauskaite J. (2021). A dynamic fuzzification approach for interval type- 2 membership function development: case study for QoS planning, Soft Computing, 25, 11269-11287, 2021.
https://doi.org/10.1007/s00500-021-05899-8
Kalibatien˙e D.; Miliauskait˙e J. (2021). A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development, Informatica, 85-118, 2021.
https://doi.org/10.15388/21-INFOR444
Karaboga D.; Kaya E. (2019). Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey, Artificial Intelligence Review, 52, 2263--2293, 2019.
https://doi.org/10.1007/s10462-017-9610-2
Kaya R.; Yet B. (2019). Building Bayesian networks based on DEMATEL for multiple criteria decision problems: A supplier selection case study, Expert Systems with Applications, 134, 234-248, 2019.
https://doi.org/10.1016/j.eswa.2019.05.053
Khamosh A.; Anwer M.A.; Nasrat N.; et al. (2020). Impact of Network QoS factors on QoE of IoT Services, InCIT 2020 - 5th International Conference on Information Technology, Chonburi, Thailand. 61-65, 2020.
https://doi.org/10.1109/InCIT50588.2020.9310969
Kondratyeva O., Kushik N., Cavalli A., et al. (2013). Evaluating web service quality using finite state models, Proceedings of the 2013 13th International Conference on Quality Software (QSIC '13), July, 2013, 95-102, 2013.
https://doi.org/10.1109/QSIC.2013.52
Korkmaz M. (2021). A study over the general formula of regression sum of squares in multiple linear regression, Numerical Methods for Particular Defferencial Equations, 37(1), 406--421, 2021.
https://doi.org/10.1002/num.22533
Laghari A.A.; He H.; Khan A.; et al. (2018). Quality of experience framework for cloud computing (QoC), IEEE Access, 6, 64876--64890, 2018.
https://doi.org/10.1109/ACCESS.2018.2865967
Leme R.C. (2022). Analytical Optimization Applied to Social Aspects and Public Policies, In Zambroni de Souza A.C.; Verkerk M.J.; Ribeiro P.F. (Eds.), Interdisciplinary and Social Nature of Engineering Practices. Studies in Applied Philosophy, Epistemology and Rational Ethics, Springer. 61, 2022.
https://doi.org/10.1007/978-3-030-88016-3
Li M.; Lu Q.; Zhang M. (2020). A Two-tier Service Filtering Model for Web Service QoS Prediction, IEEE Access, 8, 221278--221287, 2020.
https://doi.org/10.1109/ACCESS.2020.3043773
Liu D.; Liu Y.; Chen X. (2019). The new similarity measure and distance measure between hesitant fuzzy linguistic term sets and their application in multi-criteria decision making, Journal of Intelligent and Fuzzy Systems, IEEE. 37(1), 995- 1006, 2019.
https://doi.org/10.3233/JIFS-181886
Ma Y.; Wang S.; Hung P.C.K.; et al. (2016). A highly accurate prediction algorithm for unknown web service QoS values, IEEE Transactions on Services Computing, 9(4), 511-523, 2016.
https://doi.org/10.1109/TSC.2015.2407877
Machini A.; Enriquez J.; Casas S. (2020). Nexo: Una herramienta para la visualización y análisis de indicadores QoS y QoE móviles, Informes Científicos Técnicos - UNPA, 12(2), 47-62, 2020.
https://doi.org/10.22305/ict-unpa.v12.n2.731
Mesquita D.P.P.; Gomes J.P.P.; Souza Junior A.H.; et al. (2017). Euclidean distance estimation in incomplete datasets, Neurocomputing, 248, 11-18, 2017.
https://doi.org/10.1016/j.neucom.2016.12.081
Miliauskait˙e J.; Kalibatiene D. (2020). On General Framework of Type-1 Membership Function Construction: Case Study in QoS Planning, International Journal of Fuzzy Systems, 22, 504-521, 2020.
https://doi.org/10.1007/s40815-019-00753-4
Nielsen J. (1994). Usability engineering, Morgan Kaufmann, San Francisco, 1994.
Ouadah A.; Hadjali A.; Nader F.; et al. (2019). SEFAP: an efficient approach for ranking skyline web services, Journal of Ambient Intelligence and Humanized Computing, 10, 709-725, 2019.
https://doi.org/10.1007/s12652-018-0721-7
Rangarajan S.; Liu H.; Wang H. (2020). Web service QoS prediction using improved software source code metrics, PLoS ONE, 15(1):e0226867, 2020.
https://doi.org/10.1371/journal.pone.0226867
Song Y.; Wang Y.; Jin D. (2020). A Bayesian Approach Based on Bayes Minimum Risk Decision for Reliability Assessment of Web Service Composition, Future Internet, 12(12), 1-20, 2020.
https://doi.org/10.3390/fi12120221
Sridevi S., Karpagam G.R., Vinoth Kumar B. (2021). Incorporating blockchain for semantic web service selection (SWSS) method, Sadhana, 46(89), 1-14, 2021.
https://doi.org/10.1007/s12046-021-01619-y
Stoklasa J.; Talášek T.; Stoklasová J. (2020). Executive summaries of uncertain values close to the gain/loss threshold - linguistic modelling perspective, Expert Systems with Applications, 145: 113108, 2020.
https://doi.org/10.1016/j.eswa.2019.113108
Takagi T.; Sugeno M. (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116--132, 1985.
https://doi.org/10.1109/TSMC.1985.6313399
Taylor B., Dey A.K., Siewiorek D., et al. (2016). Using crowd sourcing to measure the effects of system response delays on user engagement, Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 2016. 4413--4422, 2016.
https://doi.org/10.1145/2858036.2858572
Tripathy A.K.; Tripathy P.K. (2018). Fuzzy QoS requirement-aware dynamic service discovery and adaptation, Applied Soft Computing Journal, 68, 136--146, 2018.
https://doi.org/10.1016/j.asoc.2018.03.038
Vafaei N.; Ribeiro R.A.; Camarinha-Matos L.M. (2016). Normalization techniques for multicriteria decision making: Analytical hierarchy process case study, In Camarinha-Matos, L.M.; Falcão, A.J.; Vafaei, N.; Najdi, S. (Eds), Technological Innovation for Cyber-Physical Systems. DoCEIS 2016. IFIP Advances in Information and Communication Technology, Springer, 470, 261-268, 2016.
https://doi.org/10.1007/978-3-319-31165-4_26
Winckler M.; Bach C.; Bernhaupt R. (2013). Identifying user experience dimensions for mobile incident reporting in urban contexts, IEEE Transactions on Professional Communication, 56(2), 97-119, 2013.
https://doi.org/10.1109/TPC.2013.2257212
Xu J.; Guo L.; Zhang R.; et al. (2018). QoS-aware Service Composition Using Fuzzy Set Theory and Genetic Algorithm, Wireless Personal Communications, 102, 1009-1028, 2018.
https://doi.org/10.1007/s11277-017-5129-8
Ye F.; Lin Z.; Chen C.; et al. (2021). Outlier-resilient web service qos prediction, WWW '21: Proceedings of the Web Conference 2021, April 19-23th, 2021, Ljubljana, Slovenia, ACM. 3099-3110, 2021.
https://doi.org/10.1145/3442381.3449938
Zhang P.; Jin H.; Zhuang Y.; et al. (2018). Weighted Bayesian Runtime Monitor: A Novel QoS Monitoring Approach Sensitive to Environmental Factors, International Journal of Software Engineering and Knowledge Engineering, World Scientific Publishing Company, 28(09), 1339-1368, 2018.
https://doi.org/10.1142/S0218194018500389
Zhang P.; Jin H.; Dong H.; Song W. (2022). M-BSRM: Multivariate BayeSian Runtime QoS Monitoring Using Point Mutual Information, IEEE Transactions on Services Computing, 15, 484-497, 2022.
https://doi.org/10.1109/TSC.2019.2952604
Zhang W.Y.; Guo S.S.; Zhang S. (2017). Combining hyperlink-induced topic search and Bayesian approach for personalised manufacturing service recommendation, International Journal of Computer Integrated Manufacturing, 30(11), 1152-1163, 2017.
https://doi.org/10.1080/0951192X.2016.1268723
Zhang Y.; Wang K.; He Q.; et al. (2019). Covering-Based Web Service Quality Prediction via Neighborhood-Aware Matrix Factorization, IEEE Transactions on Services Computing, 14(5), 1333-1344, 2019.
https://doi.org/10.1109/TSC.2019.2891517
Zheng Z.; Zhang Y.; Lyu M.R. (2014). Investigating QoS of real-world web services, IEEE Transactions on Services Computing, 7(1), 32-39, 2014.
https://doi.org/10.1109/TSC.2012.34
Zheng Z.; Zhang Y.; Lyu M.R. (2010). Distributed QoS evaluation for real-world Web services, 2010 IEEE International Conference on Web Services, July 05-10th 2010, IEEE. 83-90, 2010.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Jolanta Miliauskaitė, Diana Kalibatienė
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.