2017 Volume E100.B Issue 5 Pages 893-900
The measurement accuracy of frequency difference of arrival (FDOA) is usually determinant for emitters location system using rapidly moving receivers. The classic technique of expanding the integration time of the cross ambiguity function (CAF) to achieve better performance of FDOA is likely to incur a significant computational burden especially for wideband signals. In this paper, a nonconsecutive short-time CAF's methods is proposed with expansion of root mean square (RMS) integration time, instead of the integration time, and a factor of estimation precision improvement is given which is relative to the general consecutive method. Furthermore, by analyzing the characteristic of coherent CAF and the influence of FDOA rate, an upper bound of the precision improvement factor is derived. Simulation results are provided to confirm the effectiveness of the proposed method.