Abstract
An unsupervised algorithm is proposed for learning overcomplete topographic representations of nature image. Our method is based on Independent Component Analysis (ICA) model due to its superiority on feature extraction, and overcomes the weakness of traditional method in fast overcomplete learning. Besides, the learnt topographic representation, resembling receptive fields of complex cells, can be used as descriptors to extract invariant features. Recognition experiments on Caltech-101 dataset confirm that these complex cell descriptors are not only efficient in feature extraction but achieve comparable performances to traditional descriptors.