Reinforcement Learning for Agents with Many Sensors and Actuators Acting in Categorizable Environments
Main Article Content
Abstract
In this line, we observe that, in realistic situations, the reward received by the robot depends only on a reduced subset of all the executed actions and that only a reduced subset of the sensor inputs (possibly different in each situation and for each action) are relevant to predict the reward. We formalize this property in the so called 'categorizability assumption' and we present an algorithm that takes advantage of the categorizability of the environment, allowing a decrease in the learning time with respect to existing reinforcement-learning algorithms. Results of the application of the algorithm to a couple of simulated realistic-robotic problems (landmark-based navigation and the six-legged robot gait generation) are reported to validate our approach and to compare it to existing flat and generalization-based reinforcement-learning approaches.