Computing representative networks for braided rivers
DOI:
https://doi.org/10.20382/jocg.v10i1a14Abstract
Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model \emph{braided rivers} (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of braided rivers by employing the descending quasi Morse-Smale complex on the river bed (a polyhedral terrain), and extending it with a certain ordering of bars from one river bank to the other. This allows us to compute a graph that models a representative channel network, consisting of lowest paths. To ensure that channels in this network are sufficiently different we define a \emph{sand function} that represents the volume of sediment separating them. We show that in general the problem of computing a maximum network of non-crossing channels which are $\delta$-different from each other (as measured by the sand function) is NP-hard. However, using our ordering between the river banks, we can compute a maximum $\delta$-different network that respects this order in polynomial time. We implemented our approach and applied it to simulated and real-world braided rivers.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).