Visibility maps of realistic terrains have linear smoothed complexity
DOI:
https://doi.org/10.20382/jocg.v1i1a5Abstract
We study the complexity of the visibility map of terrains whose triangles are fat, not too steep and have roughly the same size. It is known that the complexity of the visibility map of such a terrain with n triangles is Θ(n2) in the worst case. We prove that if the elevations of the vertices of the terrain are subject to uniform noise which is proportional to the edge lengths, then the worst-case expected (smoothed) complexity is only Θ(n). We also prove non-trivial bounds for the smoothed complexity of instances where some triangles do not satisfy the above properties. Our results provide an explanation why visibility maps of superlinear complexity are unlikely to be encountered in practice.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).