Preprint
Article

Phenotypic Variability of Root System Architecture Traits for Drought Tolerance among Accessions of Citron Watermelon (Citrullus Lanatus Var. Citroides (L.H. Bailey)

Altmetrics

Downloads

190

Views

192

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 July 2022

Posted:

05 August 2022

You are already at the latest version

Alerts
Abstract
Citron watermelon (Citrullus lanatus var. citroides) is an extremely drought-tolerant cucurbit crop widely grown in sub-Saharan Africa in arid and semi-arid environments characterized by drought. The species is a C3 xerophyte used for multiple purposes, including intercropping with maize and has a deep taproot system. The deep taproot system plays a key role in the species’ adaptation to dry conditions. Understanding root system development of this crop could be useful in identifying traits for breeding water-use efficient and drought-tolerant varieties. This study compared root system architecture of citron watermelon accessions under water-stress conditions. Nine selected and drought-tolerant citron watermelon accessions were grown under non-stress (NS) and water stress (WS) conditions using the root rhizotron procedure in a glasshouse. The following root system architecture (RSA) traits were measured, namely: root system width (RSW), root system depth (RSD), convex hull area (CHA), total root length (TRL), root branch count (RBC), total root volume (TRV), leaf area (LA), leaf number (LN), first seminal root length (FSRL), seminal root angle (SRA), root dry mass (RDM), shoot dry mass (SDM), root–shoot mass ratio (RSM), root mass ratio (RMR), shoot mass ratio (SMR) and root tissue density (RTD). The data collected on RSA traits were subjected to the analysis of variance (ANOVA), correlation and principal component analyses. ANOVA revealed a significant (p < 0.05) accession × water stress interaction effect for studied RSA traits. Under WS, RDM exhibited significant and positive correlations with RSM (r = 0.65), RMR (r = 0.66), RSD (r = 0.66), TRL (r = 0.60), RBC (r = 0.72), FSRL (r = 0.73) and LN (r = 0.70). Principal component analysis revealed high loading scores for the following RSA traits: RSW (0.89), RSD (0.97), TRL (0.99), TRV (0.90), TRL (0.99), RMR (0.96) and RDM (0.76). In conclusion, the study has shown that the identified RSA traits could be useful in crop improvement programmes for citron watermelon genotypes with enhanced drought adaptation for improved yield performance under drought-prone environments.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated