Int J Performability Eng ›› 2020, Vol. 16 ›› Issue (1): 78-86.doi: 10.23940/ijpe.20.01.p9.7886
• Orginal Article • Previous Articles Next Articles
Yunjie Leia, Ying Maab*(), Shunyi Chena, Yu Sunbc*(
), and Keshou Wuad
Submitted on
;
Revised on
;
Accepted on
Contact:
Ying Ma,Yu Sun
E-mail:[email protected];[email protected]
Supported by:
Yunjie Lei, Ying Ma, Shunyi Chen, Yu Sun, and Keshou Wu. Fuzzy Multi-Attribute Decision Making for Software Defect Detection Model Evaluation [J]. Int J Performability Eng, 2020, 16(1): 78-86.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Scale meaning table"
Scale value | Comparative relationship |
---|---|
1 | Both are equally important |
3 | The former is slightly more important than the latter |
5 | The former is moderately more important than the latter |
7 | The former is important than the latter |
9 | The former is significantly important than the latter |
2, 4, 6, 8 | The intermediate state of the above adjacent scale values |
If the ratio of the importance of element a to element b is aij, then the ratio of the importance of element b to element a is |
Table 4
CM1 dataset algorithm performance table"
TP-Rate | FP-Rate | Precision | Accuracy | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
NaïveBayes | 0.897 | 0.688 | 0.924 | 0.189 | 0.897 | 0.911 | 0.722 |
Logistic | 0.971 | 0.854 | 0.914 | 0.176 | 0.971 | 0.942 | 0.787 |
J48 | 0.978 | 0.875 | 0.912 | 0.172 | 0.978 | 0.944 | 0.644 |
AdaBoostM1 | 1.000 | 1.000 | 0.903 | 0.000 | 1.000 | 0.949 | 0.742 |
SMO | 1.000 | 1.000 | 0.903 | 0.000 | 1.000 | 0.949 | 0.500 |
Table 5
JM1 dataset algorithm performance table"
TP-Rate | FP-Rate | Precision | Accuracy | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
NaïveBeyes | 0.950 | 0.796 | 0.842 | 0.222 | 0.950 | 0.893 | 0.678 |
Logistic | 0.983 | 0.898 | 0.830 | 0.184 | 0.983 | 0.900 | 0.704 |
J48 | 0.928 | 0.742 | 0.848 | 0.233 | 0.928 | 0.886 | 0.670 |
AdaBoostM1 | 1.000 | 0.999 | 0.817 | 0.030 | 1.000 | 0.899 | 0.705 |
SMO | 1.000 | 0.995 | 0.817 | 0.065 | 1.000 | 0.900 | 0.503 |
Table 6
KC1 dataset algorithm performance table"
TP-Rate | FP-Rate | Precision | Accuracy | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
NaïveBeyes | 0.907 | 0.625 | 0.888 | 0.297 | 0.907 | 0.897 | 0.788 |
Logistic | 0.974 | 0.791 | 0.870 | 0.292 | 0.974 | 0.919 | 0.803 |
J48 | 0.940 | 0.662 | 0.886 | 0.330 | 0.940 | 0.912 | 0.743 |
AdaBoostM1 | 1.000 | 1.000 | 0.845 | 0.000 | 1.000 | 0.916 | 0.779 |
SMO | 0.995 | 0.963 | 0.849 | 0.121 | 0.995 | 0.917 | 0.516 |
Table 7
MC1 dataset algorithm performance table"
TP-Rate | FP-Rate | Precision | Accuracy | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
NaïveBeyes | 0.943 | 0.397 | 0.997 | 0.195 | 0.943 | 0.969 | 0.901 |
Logistic | 0.999 | 0.721 | 0.995 | 0.425 | 0.999 | 0.997 | 0.889 |
J48 | 0.999 | 0.721 | 0.995 | 0.450 | 0.999 | 0.997 | 0.743 |
AdaBoostM1 | 1.000 | 1.000 | 0.993 | 0.000 | 1.000 | 0.996 | 0.931 |
SMO | 1.000 | 1.000 | 0.993 | 0.000 | 1.000 | 0.996 | 0.500 |
Table 8
PC1 dataset algorithm performance table"
TP-Rate | FP-Rate | Precision | Accuracy | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
NaïveBeyes | 0.934 | 0.697 | 0.948 | 0.218 | 0.934 | 0.941 | 0.641 |
Logistic | 0.988 | 0.921 | 0.936 | 0.135 | 0.988 | 0.961 | 0.833 |
J48 | 0.988 | 0.776 | 0.945 | 0.336 | 0.988 | 0.966 | 0.654 |
AdaBoostM1 | 1.000 | 1.000 | 0.931 | 0.000 | 1.000 | 0.964 | 0.805 |
SMO | 0.999 | 1.000 | 0.931 | -0.008 | 0.999 | 0.964 | 0.500 |
Table 1
1. Performance weighting tables for each algorithm"
NaïveBeyes | Logistic | J48 | AdaBoostM1 | SMO | |
---|---|---|---|---|---|
CM1 | 0.8497 | 0.9035 | 0.8913 | 0.9114 | 0.8836 |
JM1 | 0.8615 | 0.8827 | 0.8477 | 0.8873 | 0.8655 |
KC1 | 0.8564 | 0.8986 | 0.8725 | 0.9017 | 0.8729 |
MC1 | 0.9031 | 0.9544 | 0.9386 | 0.9539 | 0.9045 |
PC1 | 0.8688 | 0.9246 | 0.9083 | 0.9252 | 0.8894 |
1. | T. Hall, S. Beecham, D. Bowes, D. Gray, et al., “A Systematic Literature Review on Fault Prediction Performance in Software Engineering,” IEEE Transactions on Software Engineering, Vol. 38, No. 6, pp. 1276-1304, 2012 |
2. | Y. Ma, X. Zhu, S. Zhu, et al., “Combating the Class Imbalance Problem in Sparse Representation Learning,” Journal of Intelligent and Fuzzy Systems, Vol. 35, No. 2, pp. 1865-1874, 2018 |
3. | Y. Ma, S. Zhu, Y. Chen,J. Li, “Kernel CCA based Transfer Learning for Software Defect Prediction,” IEICE Transactions on Information and Systems, Vol. E100.D, No. 8, pp. 1903-1906, 2017 |
4. | M. H. Halstead, “Elements of Software Science,”Operating and Programming Systems Series, 1978 |
5. | T. J. Mccabe, “A Complexity Measure,” Vol. 2, pp. 308-320, 1976 |
6. | Y. Ma, S. Zhu, K. Qin,G. Luo, “Combining the Requirement Information for Software Defect Estimation in Design Time,” Information Processing Letters, Vol. 114, No. 9, pp. 469-474, 2014 |
7. | Y. Ma, Ke Qin, and S. Zhu, “Discrimination Analysis for Predicting Defect-Prone Software Modules,” Journal of Applied Mathematics, Vol. 2014, Article ID 675368, 14 pages, 2014 |
8. | Y. Ma, W. Pan, S. Zhu, et al., “An Improved Semi-Supervised Learning Method for Software Defect Prediction,” Journal of Intelligent and Fuzzy Systems, Vol. 27, No. 5, pp. 2473-2480, 2014 |
9. | Y. Ma, G. Luo,H. Chen, “Kernel based Asymmetric Learning for Software Defect Prediction,” IEICE Transactions on Information and Systems, Vol. E95-D, No. 1, pp. 267-270, 2012 |
10. | G. Luo, Y. Ma,K. Qin, “Active Learning for Software Defect Prediction,” IEICE Transactions on Information and Systems, Vol. E95-D, No. 6, pp. 1680-1683, 2012 |
11. | G. Luo, Y. Ma,K. Qin, “Asymmetric Learning based on Kernel Partial Least Squares for Software Defect Prediction,” IEICE Transactions on Information and Systems, Vol. E95-D, No. 7, pp. 2006-2008, 2012 |
12. | J. Ren, K. Qin, Y. Ma,G. Luo, “On Software Defect Prediction using Machine Learning,” Journal of Applied Mathematics, Vol. 2014, Article ID 785435, 8 pages, 2014 |
13. | Y. Ma, G. Luo, X. Zeng,A. Chen, “Transfer Learning for Cross-company Software Defect Prediction,” Information and Software Technology, Vol. 54, No. 3, pp. 248-256, 2012 |
14. | Y. Zhou, H. Leung,B. Xu, “Examining the Potentially Confounding Effect of Class Size on the Associations between Object-Oriented Metrics and Change-Proneness,” IEEE Transactions on Software Engineering, Vol. 35, No. 5, pp. 607-623, 2009 |
15. | Y. Zhou, B. Xu, H. Leung, et al., “An in-Depth Study of the Potentially Confounding Effect of Class Size in Fault Prediction,” ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, pp. 1-51, 2014 |
16. | G. Eibl and K. P. Pfeiffer, “How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code,” inProceedings of European Conference on Machine Learning, 2002 |
17. | S. Keerthim and S. K. Shevade, “SMO Algorithm for Least-Squares SVM Formulations,” Neural Computation, Vol. 15, No. 2, pp. 487-507, 2014 |
18. | S. Tesfamariam and R. Sadiq, “Risk-based Environmental Decision-Making using Fuzzy Analytic Hierarchy Process (F-AHP),” Stochastic Environmental Research and Risk Assessment, Vol. 21, No.1, pp. 35-50, 2006 |
19. | C. Wei, C. F. Chien,M. J. Wang, “An AHP-based Approach to ERP System Selection,” International Journal of Production Economics, Vol. 96, No. 1, pp. 47-62, 2005 |
20. | M. G.Sobol and G. Klein, “Multi-Objective Decision Making,”Interfaces, 1987 |
No related articles found! |
|