Retaining Data from Streams of Social Platforms with Minimal Regret
Retaining Data from Streams of Social Platforms with Minimal Regret
Nguyen Thanh Tam, Matthias Weidlich, Duong Chi Thang, Hongzhi Yin, Nguyen Quoc Viet Hung
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
Main track. Pages 2850-2856.
https://doi.org/10.24963/ijcai.2017/397
Today's social platforms, such as Twitter and Facebook, continuously generate massive volumes of data. The resulting data streams exceed any reasonable limit for permanent storage, especially since data is often redundant, overlapping, sparse, and generally of low value. This calls for means to retain solely a small fraction of the data in an online manner. In this paper, we propose techniques to effectively decide which data to retain, such that the induced loss of information, the regret of neglecting certain data, is minimized. These techniques enable not only efficient processing of massive streaming data, but are also adaptive and address the dynamic nature of social media. Experiments on large-scale real-world datasets illustrate the feasibility of our approach in terms of both, runtime and information quality.
Keywords:
Machine Learning: Time-series/Data Streams
Multidisciplinary Topics and Applications: Intelligent Database Systems
Multidisciplinary Topics and Applications: Multidisciplinary Topics and Applications