Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact [email protected]   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.20 No.1&2 February 2020  

Quantum algorithm for matrix functions by Cauchy's integral formula (pp14-36)
          
Souichi Takahira, Asuka Ohashi, Tomohiro Sogabe, and Tsuyoshi S. Usuda
         
doi: https://doi.org/10.26421/QIC20.1-2-2

Abstracts: For matrix A, vector b and function f, the computation of vector f(A)b arises in many scientific computing applications. We consider the problem of obtaining quantum state |f> corresponding to vector f(A)b. There is a quantum algorithm to compute state |f> using eigenvalue estimation that uses phase estimation and Hamiltonian simulation e^{\im A t}. However, the algorithm based on eigenvalue estimation needs \poly(1/\epsilon) runtime, where \epsilon is the desired accuracy of the output state. Moreover, if matrix A is not Hermitian, \e^{\im A t} is not unitary and we cannot run eigenvalue estimation. In this paper, we propose a quantum algorithm that uses Cauchy's integral formula and the trapezoidal rule as an approach that avoids eigenvalue estimation. We show that the runtime of the algorithm is \poly(\log(1/\epsilon)) and the algorithm outputs state  |f> even if A is not Hermitian.
key words:
Quantum algorithm, Matrix functions, HHL algorithm, Cauchy's integral formula

��