Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Field Observation and Preprocess of Aerial Photographs
2.2.2. Region of Interest Construction
2.2.3. Acquisition and Preprocessing of Remote Sensing Data
2.3. Vegetation Community Classification and Accuracy Evaluation
2.3.1. Classification Method
2.3.2. Classification and Accuracy Evaluation
3. Results
3.1. Characteristics of Field Observation and Its Corresponding Multi-Indices
3.2. Accuracy Evaluation of the Different Classification Methods
3.3. Distribution and Area of KP Community
4. Discussion
4.1. Influence Factors of KP Community in the Qinghai–Tibet Plateau
4.2. Challenges and Prospects for Alpine Meadow Grass Communities Classification
4.2.1. Field Observation
4.2.2. Classification Variables
4.2.3. Classification Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences. Vegetation of China and Its Geographic Pattern: Illustration of the Vegetation Map of the People’s Republic of China (1:1,000,000); Geological Publishing House: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Miehe, G.; Bach, K.; Miehe, S.; Kluge, J.; Yang, Y.; Duo, L.; Co, S.; Wesche, K. Alpine steppe plant communities of the Tibetan highlands. Appl. Veg. Sci. 2011, 14, 547–560. [Google Scholar] [CrossRef]
- Wang, P.; Lassoie, J.; Morreale, S.; Dong, S. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangeland J. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Liu, S.; Zamanian, K.; Schleuss, P.; Zarebanadkouki, M.; Kuzyakov, Y. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 2018, 252, 93–104. [Google Scholar] [CrossRef]
- Cao, G.M.; Long, R.J. System Stability and its Self-maintaining Mechanism by Grazing in Alpine Kobresia Meadow. Chin. J. Agrometeorol. 2009, 30, 553–559. [Google Scholar]
- Lin, L. Response and Adaptation of Plant-Soil System of Alpine Meadows in Different Successional Stages to Grazing Intensity. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2017. [Google Scholar]
- Li, X.; Gao, J.; Brierley, G.; Qiao, Y.; Zhang, J.; Yang, Y. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Li, S.; Zhang, H.; Zhang, B.; Ding, M.; Wang, Z.; Paudel, B. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 2018, 8, 5949. [Google Scholar] [CrossRef] [PubMed]
- Miehe, G.; Schleuss, P.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerkenj, T.; et al. The Kobresia pygmaea ecosystem of the Tibetan highlands—origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef]
- Beard, J.S. The vegetation survey of Western Australia. Vegetatio 1975, 30, 179–187. [Google Scholar] [CrossRef]
- Cawsey, E.; Austin, M.; Baker, B.L. Regional vegetation mapping in Australia: A case study in the practical use of statistical modelling. Biodivers. Conserv. 2002, 11, 2239–2274. [Google Scholar] [CrossRef]
- Naidoo, R.; Hill, K. Emergence of indigenous vegetation classifications through integration of traditional ecological knowledge and remote sensing analyses. Environ. Manag. 2006, 38, 377–387. [Google Scholar] [CrossRef]
- Bartha, S. A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MTA). Folia Geobot. 2007, 42, 225–247. [Google Scholar]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An Updated Vegetation Map of China (1:1000000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- Palm, C. Color texture classification by integrative co-occurrence matrices. Pattern Recognit. 2004, 37, 965–976. [Google Scholar] [CrossRef]
- Pietikäinen, M.; Mäenpää, T.; Viertola, J. Color texture classification with color histograms and local binary patterns. Presented at the Workshop on Texture Analysis in Machine Vision, Oulu, Finland, 14–15 June 1999; pp. 14–15. [Google Scholar]
- Arif, M.S.M.; Gülch, E.; Tuhtan, J.A.; Thumser, P.; Haas, C. An investigation of image processing techniques for substrate classification based on dominant grain size using rgb images from uav. Int. J. Remote Sens. 2017, 38, 2639–2661. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Tian, Q.; Yang, Y.; Zhou, Y.; Sun, Y.; Mi, X. Comparative Analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD Sensor Data for Grassland Monitoring Applications. Remote Sens. 2015, 7, 2089–2108. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yu, R.; Hao, Y.; Wu, L.; Zhang, W.; Zhang, Q.; Bu, X. A new method for mapping aquatic vegetation especially underwater vegetation in lake ulansuhai using GF-1 satellite data. Remote Sens. 2018, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhan, Y.; Tian, Q.; Gu, X.; Yu, T.; Wang, L. Crop classification based on GF-1/WFV NDVI time series. Trans. Chin. Soc. Agric. Eng. 2015, 31, 155–161. [Google Scholar]
- Yi, S.; Chen, J.; Qin, Y.; Xu, G.W. The burying and grazing effects of plateau pika on alpine grassland are small: A pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences 2016, 13, 6273. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Meng, B.P.; Liang, T.G.; Feng, Q.S.; Gao, J.L.; Yang, S.X.; Huang, X.D.; Xie, H.J. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Meng, B.P.; Gao, J.; Liang, T.; Cui, X.; Ge, J.; Yin, J.; Feng, Q.; Xie, H. Modeling of alpine grassland cover based on unmanned aerial vehicle technology and multi-factor methods: A case study in the east of Tibetan Plateau, China. Remote Sens. 2018, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yi, S.H.; Hou, F.J. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 8–10. [Google Scholar] [CrossRef]
- Guo, X.; Yi, S.; Qin, Y.; Chen, J. Habitat environment affects the distribution of plateau pikas:A study based on an unmanned aerial vehicle. Pratacultural Sci. 2017, 34, 1306–1313. [Google Scholar]
- Liang, T.; Yang, S.; Feng, Q.; Liu, B.; Zhang, R.; Huang, X.; Xie, H. Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sens. Environ. 2016, 186, 164–172. [Google Scholar] [CrossRef]
- Meng, B.P.; Yi, S.H.; Liang, T.G.; Yin, J.P.; Cui, X.; Ge, J.; Hou, M.J.; Lv, Y.Y. Modeling Alpine Grassland Above Ground Biomass Based on Remote Sensing Data and Machine Learning Algorithm: A Case Study in East of the Tibetan Plateau, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2986–2995. [Google Scholar] [CrossRef]
- Dong, S.W.; Sun, D.F.; Li, H. Crop Decision Tree Classification Extraction Based on MODIS NDVI in Beijing. Adv. Mater. Res. 2014, 955–959, 787–790. [Google Scholar] [CrossRef]
- Li, D.; Yang, F.; Wang, X. Study on Ensemble Crop Information Extraction of Remote Sensing Images Based on SVM and BPNN. J. Indian Soc. Remote Sens. 2016, 45, 1–9. [Google Scholar] [CrossRef]
- Hou, M.J.; Ge, J.; Gao, J.L.; Meng, B.P.; Li, Y.C.; Yin, J.P.; Liu, J.; Feng, Q.S.; Liang, T.G. Ecological risk assessment and impact factor analysis of alpine wetland ecosystem based on LUCC and boosted regression tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Wu, S. The effects of land-use types and conversions on desertification in Mu Us Sandy Land of China. J. Geogr. Sci. 2006, 16, 57–68. [Google Scholar] [CrossRef]
- Wiesmair, M.; Feilhauer, H.; Magiera, A.; Otte, A.; Waldhardt, R. Estimating Vegetation Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the Georgian Caucasus. Mt. Res. Dev. 2016, 36, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liang, T.; Huang, X.; Lin, H.; Xie, H.; Ren, J. Characteristics of global potential natural vegetation distribution from 1911 to 2000 based on comprehensive sequential classification system approach. Grassl. Sci. 2013, 59, 87–99. [Google Scholar] [CrossRef]
- Xu, K. Maximum Likelihood Estimate. Encycl. Syst. Biol. 2013, 38, 1–4. [Google Scholar]
- He, Q. Neural network and its application in IR; Graduate School of Library and Information Science, Urbana-Champaign: Champaign, IL, USA, 2008. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Suess, S.; Hostert, P. The EnMAP-Box—A Toolbox and Application Programming Interface for EnMAP Data Processing. Remote Sens. 2015, 7, 11249–11266. [Google Scholar] [CrossRef] [Green Version]
- Miehe, G.; Miehe, S.; Kaiser, K.; Liu, J.; Zhao, X. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio 2008, 37, 272–279. [Google Scholar] [CrossRef]
- Schleuss, P.-M.; Heitkamp, F.; Sun, Y.; Miehe, G.; Xu, X.; Kuzyakov, Y. Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: Localization by 15N labeling and implications for a vulnerable ecosystem. Ecosystems 2015, 18, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Schleuss, P.M.; Pausch, J.; Xu, X.; Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fertil. Soils 2018, 54, 569–581. [Google Scholar] [CrossRef]
- Babel, W.; Biermann, T.; Coners, H.; Falge, E.; Seeber, E.; Ingrisch, J.; Schleuss, P.; Gerken, T.; Leonacher, J.; Leipold, T. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 2014, 11, 6633–6656. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tan, H.; Deng, Y.; Wu, J.; Xu, X.L.; Wang, Y.; Tang, Y.; Higashi, T.; Cui, X. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Glob. Chang. Biol. 2010, 16, 2322–2333. [Google Scholar] [CrossRef]
- Hafner, S.; Unteregelsbacher, S.; Seeber, E.; Lena, B.; Xu, X.; Guggenberger, G.; Miehe, G.; Kuzyakov, Y. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob. Chang. Biol. 2012, 18, 528–538. [Google Scholar] [CrossRef]
- Ingrisch, J.; Biermann, T.; Seeber, E.; Leipold, T.; Li, M.; Ma, Y.; Xu, X.; Guggenerger, G.; Foken, T. Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci. Total Environ. 2015, 505, 1213–1224. [Google Scholar] [CrossRef]
- Li, J.M.; Ehlers, T.A.; Werner, M.; Mutz, S.G.; Steger, C.; Paeth, H. Late Quaternary climate, precipitation 18O, and Indian monsoon variations over the Tibetan Plateau. Earth Planet. Sci. Lett. 2016, 457, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Luo, T.; Molg, T.; Zhao, J.; Li, X.; Cui, X.; Du, M.; Tang, Y. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Sci. Rep. 2016, 6, 20985. [Google Scholar] [CrossRef] [PubMed]
- Miehe, G.; Miehe, S. Environmental changes in the pastures of Xizang. Marbg. Geogr. Schr. 2000, 135, 282–311. [Google Scholar]
- Lehnert, L.W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Heberling, G.; Görzen, E.; Miehe, G.; Seeber, E.; Wesche, K. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 2017, 20, 327–339. [Google Scholar] [CrossRef]
- Niu, Y.; Zhu, H.; Yang, S.; Ma, S.; Zhou, J.; Chu, B.; Hua, R.; Hua, L. Overgrazing leads to soil cracking that later triggers the severe degradation of alpine meadows on the Tibetan Plateau. Land Degrad. Dev. 2019, 30, 1243–1257. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.; Walker, C.; Peterson, A.; Merow, C.; Papes, M. A checklist for maximizing reproducibility of ecologicla niche model. Nat. Ecol. Evol. 2019, 3, 1382–1395. [Google Scholar] [CrossRef] [Green Version]
- Pedrotti, F. Plant and Vegetation Mapping; Springer: Berlin, Germany, 2013. [Google Scholar]
- Wen, Q.; Zhang, Z.; Liu, S.; Wang, X.; Wang, C. Classification of Grassland Types by MODIS Time-Series Images in Tibet, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 404–409. [Google Scholar] [CrossRef]
- Yu, K.F.; Lehmkuhl, F.; Falk, D. Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data. J. Mt. Sci. 2017, 14, 77–93. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total. Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Meng, B.; Chen, J.; Wang, X.; Jiang, H.; Yu, Y.; Yi, S. Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 26, e01517. [Google Scholar] [CrossRef]
- Ma, W.W. Study on Methods for Grassland Classification and Quality Estimation by Remote Sensing: A Case Study in the Region around Qinghai Lake; Chinese Academy of Science: Beijing, China, 2015. [Google Scholar]
- Bolstad, P.V.; Lillesand, T.M. Improved Classification of Forest Vegetation in Northern Wisconsin Through a Rule-Based Combination of Soils, Terrain, and Landsat Thematic Mapper Data. For. Sci. 1992, 1, 5–20. [Google Scholar]
- Settle, J.J.; Briggs, S.A. Fast maximum-likelihood class-ification of remotely sensed imagery. Int. J. Remote Sens. 1987, 8, 723–734. [Google Scholar] [CrossRef]
- Zhu, H.W.; Basir, O. An adaptive fuzzy evidential nearest neighbor formulation for classifying remote sensing images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1874–1889. [Google Scholar]
- Navin, M.S.; Agilandeeswari, L. Comprehensive review on land use/land cover change classification in remote sensing. J. Spectr. Imaging. 2020, 9, a8. [Google Scholar] [CrossRef]
- Jiang, L.C.; Wang, Y. Mapping zoige alpine wetland using random forest classification and landsat 5 TM data. Stud. Surv. Mapp. Sci. (SSMS) 2016, 4, 24–27. [Google Scholar]
- Qiao, Y.; Chen, T.; Qiang, W.; Feng, T. Method of grassland information extraction based on multi-level segmentation and cart model. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII-3, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Wang, S. Multi-spectral remote sensing land-cover classification based on deep learning methods. J. Supercomput. 2020, 77, 2829–2843. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef] [Green Version]
Community | Dominant Species | Coverage | Other Features |
---|---|---|---|
Poaceae | Elymus nutans, Stipa silena, Festuca ovina | More than 90% | Tall grassland height (20–50 cm in height), grassland was flat without any traces of pika activity |
KH | Kobresia humilis; sub-dominant: Elymus nutans and Festuca rubra | More than 90% | Grassland was flat with low height (<10 cm in height) and high coverage, and small number of pika appeared |
KP | Kobresia pygmaea | Between 30~80% | Grassland had a unique morphology and textural characteristics, with closed and monospecific builds (2~3 cm in height), polygonal crack patterns and a felty root mat, pika and poisonous weeds are invaded frequently |
BS | Weeds | Less than 20% | Pika was rampant and weeds was overgrown |
Satellite | Band | Spectral Range (μm) | Band Type | Spatial Resolution (m) | Swath Width (km) | Revisit Period (day) | Orbit Altitude (km) |
---|---|---|---|---|---|---|---|
GF-1 | 1 | 0.45–0.52 | Blue | 16 | 800 | 4 | 675 |
2 | 0.52–0.59 | Green | |||||
3 | 0.63–0.69 | Red | |||||
4 | 0.77–0.89 | NIR | |||||
GF-6 | 1 | 0.45–0.52 | Blue | 16 | 800 | 4 | 645 |
2 | 0.52–0.59 | Green | |||||
3 | 0.63–0.69 | Red | |||||
4 | 0.77–0.89 | NIR | |||||
5 | 0.69–0.73 | Red edge 1 | |||||
6 | 0.73–0.77 | Red edge 2 | |||||
7 | 0.40–0.45 | Purple | |||||
8 | 0.59–0.63 | Yellow |
County | Data of Satellite Images | Satellite | Path | Row | Central Latitude and Longitude | Cloud Percent |
---|---|---|---|---|---|---|
Zeku | 2019.06.03 | GF1 | 23 | 98 | E 101.9, N 34.7 | 4% |
Henan | 2019.08.15 | GF6 | 30 | 72 | E 98.1, N 35.8 | 1% |
Maqu | 2020.08.25 | GF6 | 18 | 72 | E 104.7, N33.6 | 1% |
County | Input | Accuracy | Methods | |||
---|---|---|---|---|---|---|
MLE | NN | SVM | RF | |||
Zeku | Spectrum | OA (%) | 57.36 | 71.22 | 72.13 | 82.24 |
Kappa | 0.50 | 0.64 | 0.65 | 0.78 | ||
Vegetation indices + texture | OA (%) | - | 63.36 | 69.39 | 79.87 | |
Kappa | - | 0.52 | 0.61 | 0.75 | ||
Vegetation indices + texture + topography | OA (%) | 63.75 | 40.78 | 78.53 | 83.92 | |
Kappa | 0.57 | 0.24 | 0.73 | 0.80 | ||
Henan | Spectrum | OA (%) | 68.03 | 75.14 | 74.96 | 81.32 |
Kappa | 0.60 | 0.67 | 0.66 | 0.76 | ||
Vegetation indices + texture | OA (%) | 72.04 | 65.89 | 73.31 | 80.39 | |
Kappa | 0.64 | 0.54 | 0.65 | 0.75 | ||
Vegetation indices + texture + topography | OA (%) | 73.89 | 49.86 | 73.89 | 78.86 | |
Kappa | 0.66 | 0.34 | 0.66 | 0.73 | ||
Maqu | Spectrum | OA (%) | 65.67 | 70.04 | 70.28 | 75.96 |
Kappa | 0.56 | 0.60 | 0.60 | 0.68 | ||
Vegetation indices + texture | OA (%) | 51.38 | 67.12 | 73.78 | 74.06 | |
Kappa | 0.40 | 0.55 | 0.65 | 0.65 | ||
Vegetation indices + texture + topography | OA (%) | 65.19 | 61.89 | 74.09 | 82.75 | |
Kappa | 0.56 | 0.46 | 0.65 | 0.77 |
County | Input | Accuracy (%) | Method | |||
---|---|---|---|---|---|---|
MLE | NN | SVM | RF | |||
Zeku | Spectrum | PA | 50.99 | 26.06 | 39.83 | 96.37 |
UA | 49.01 | 47.96 | 56.89 | 74.07 | ||
Vegetation indices + texture | PA | - | 38.83 | 19.61 | 86.94 | |
UA | - | 46.85 | 46.49 | 69.94 | ||
Vegetation indices + texture + topography | PA | 69.30 | 64.93 | 84.82 | 97.23 | |
UA | 46.45 | 43.34 | 57.38 | 65.68 | ||
Henan | Spectrum | PA | 59.61 | 5.71 | 5.26 | 67.57 |
UA | 29.83 | 80.85 | 57.38 | 60.81 | ||
Vegetation indices +texture | PA | 26.58 | 10.06 | 26.88 | 76.73 | |
UA | 41.75 | 44.97 | 54.43 | 67.59 | ||
Vegetation indices + texture + topography | PA | 35.83 | - | 32.83 | 68.67 | |
UA | 41.86 | - | 46.40 | 67.65 | ||
Maqu | Spectrum | PA | 70.68 | 64.83 | 52.74 | 67.23 |
UA | 43.68 | 49.41 | 50.67 | 59.29 | ||
Vegetation indices + texture | PA | 59.45 | 13.68 | 61.32 | 60.84 | |
UA | 50.00 | 90.48 | 61.21 | 60.73 | ||
Vegetation indices + texture + topography | PA | 70.48 | 35.83 | 64.22 | 73.96 | |
UA | 45.53 | 52.32 | 57.42 | 78.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Zhang, W.; Li, M.; et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sens. 2021, 13, 2483. https://doi.org/10.3390/rs13132483
Meng B, Yang Z, Yu H, Qin Y, Sun Y, Zhang J, Chen J, Wang Z, Zhang W, Li M, et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sensing. 2021; 13(13):2483. https://doi.org/10.3390/rs13132483
Chicago/Turabian StyleMeng, Baoping, Zhigui Yang, Hongyan Yu, Yu Qin, Yi Sun, Jianguo Zhang, Jianjun Chen, Zhiwei Wang, Wei Zhang, Meng Li, and et al. 2021. "Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau" Remote Sensing 13, no. 13: 2483. https://doi.org/10.3390/rs13132483
APA StyleMeng, B., Yang, Z., Yu, H., Qin, Y., Sun, Y., Zhang, J., Chen, J., Wang, Z., Zhang, W., Li, M., Lv, Y., & Yi, S. (2021). Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sensing, 13(13), 2483. https://doi.org/10.3390/rs13132483