A Primal-Dual Interior-Point Method for Facility Layout Problem with Relative-Positioning Constraints
Abstract
:1. Introduction
1.1. Facility Layout Problem
1.2. Related Research
1.3. Research Purpose
2. Facility Layout Problem with Relative Positioning Constraints
2.1. The FLPRC Formulation
- N: number of departments;
- : department indices ();
- : material flow between department i and department j;
- : width and height of facility;
- : binary constants to specify the relative positioning of department i and j in the horizontal and vertical direction;
- : lower and upper limits on the aspect ratio of department i;
- : quarter of minimum area of department i;
- : rectilinear distance between department i and j in x and y direction;
- : x and y coordinates of centroid of department i;
- : half length of width and height of department i;
2.2. Reducing Redundant Inequalities by Exploiting Relative-Positioning Constraints Structure
2.2.1. Redundancy in Distance Constraints
2.2.2. Redundancy in Within-Boundary Constraints
2.2.3. Redundancy in Relative-Positioning Constraints
2.3. The FLPRC Formulation in a Matrix Form
2.3.1. Notation
2.3.2. Decision Vector
2.3.3. Objective Function
2.3.4. Distance Constraints
2.3.5. Within-Boundary Constraints
2.3.6. Aspect-Ratio Constraints
2.3.7. Area Constraints
2.3.8. Relative-Positioning Constraints
2.3.9. Overall Problem Formulation in Matrix Form
2.4. Dual Problem and Optimality Conditions for FLPRC
3. Custom Interior-Point Method for Solving FLPRC
3.1. Barrier Subproblem
- These conditions are far easier to solve than the KKT condition (26)
- As t increases, these condition approaches the KKT condition (26).
3.2. Newton Method
3.3. Efficient Newton Step Computation
3.3.1. 1st Elimination Step
3.3.2. 2nd Elimination Step
3.3.3. Third Elimination Step
3.4. Complexity Analysis
3.5. Starting-Point Using Flexible Bay Structure
Algorithm 1:Starting-point generation using the relaxed-FBS |
given , , assign department to the bay k with the horizontal precedence . sort department in the bay in the order of vertical precedence get bay area as: get bay width as: get department widths and heights as , get department coordinates as , (root node) (root node) , where is an additional clearance between departments. |
3.6. Overall Algorithm
Algorithm 2:Overall Algorithm |
given, A, b, c, find initial points by warm-start algorithm. repeat 1-4: 1. Find primal and dual search directions by Newton equation. 2. Find step size by back-tracking 3. Update primal and dual variables 4. Update until |
4. Numerical Experiments
4.1. Experimental Overview
- if
- otherwise
4.2. Experimental Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Richard, M.; Hales, L. Systematic Layout Planning. Available online: http://hpcinc.com/wp-content/uploads/2016/07/Systematic-Layout-Planning-SLP-4th-edition-soft-copy.pdf (accessed on 9 February 2021).
- Levary, R.R.; Kalchik, S. Facilities layout: A survey of solution procedures. Comput. Ind. Eng. 1985, 9, 141–148. [Google Scholar] [CrossRef]
- Kusiak, A.; Heragu, S.S. The facility layout problem. Eur. J. Oper. Res. 1987, 29, 229–251. [Google Scholar] [CrossRef]
- Hassan, M.M. Machine layout problem in modern manufacturing facilities. Int. J. Prod. Res. 1994, 32, 2559–2584. [Google Scholar] [CrossRef]
- Meller, R.D.; Gau, K.Y. The facility layout problem: Recent and emerging trends and perspectives. J. Manuf. Syst. 1996, 15, 351–366. [Google Scholar] [CrossRef]
- Drira, A.; Pierreval, H.; Hajri-Gabouj, S. Facility layout problems: A survey. Annu. Rev. Control 2007, 31, 255–267. [Google Scholar] [CrossRef]
- Arikaran, P.; Jayabalan, V.; Senthilkumar, R. Analysis of unequal areas facility layout problems. Int. J. Eng. 2010, 4, 44–51. [Google Scholar]
- Anjos, M.F.; Vieira, M.V. Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions. Eur. J. Oper. Res. 2017, 261, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Nasab, H.; Fereidouni, S.; Ghomi, S.M.T.F.; Fakhrzad, M.B. Classification of facility layout problems: A review study. Int. J. Adv. Manuf. Technol. 2018, 94, 957–977. [Google Scholar] [CrossRef]
- Koopmans, T.C.; Beckmann, M. Assignment Problems and the Location of Econmic Activities. Econometrica 1957, 25, 53–76. [Google Scholar] [CrossRef]
- Liu, Q.; Meller, R.D. A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Trans. 2007, 39, 377–394. [Google Scholar] [CrossRef]
- Van Camp, D.J.; Carter, M.W.; Vannelli, A. A nonlinear optimization approach for solving facility layout problems. Eur. J. Oper. Res. 1992, 57, 174–189. [Google Scholar] [CrossRef]
- Anjos, M.F.; Vannelli, A. An attractor-repeller approach to floorplanning. Math. Methods Oper. Res. 2002, 56, 3–27. [Google Scholar] [CrossRef]
- Anjos, M.F.; Vannelli, A. A new mathematical-programming framework for facility-layout design. INFORMS J. Comput. 2006, 18, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Jankovits, I.; Luo, C.; Anjos, M.F.; Vannelli, A. A convex optimisation framework for the unequal-areas facility layout problem. Eur. J. Oper. Res. 2011, 214, 199–215. [Google Scholar] [CrossRef]
- Anjos, M.F.; Vieira, M.V. An improved two-stage optimization-based framework for unequal-areas facility layout. Optim. Lett. 2016, 10, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.Y. Genetic algorithms, function optimization, and facility layout design. Eur. J. Oper. Res. 1992, 63, 322–346. [Google Scholar]
- Gau, K.Y.; Meller, R.D. An iterative facility layout algorithm. International J. Prod. Res. 1999, 37, 3739–3758. [Google Scholar] [CrossRef]
- Shayan, E.; Chittilappilly, A. Genetic algorithm for facilities layout problems based on slicing tree structure. Int. J. Prod. Res. 2004, 42, 4055–4067. [Google Scholar] [CrossRef]
- Scholz, D.; Petrick, A.; Domschke, W. STaTS: A slicing tree and tabu search based heuristic for the unequal area facility layout problem. Eur. J. Oper. Res. 2009, 197, 166–178. [Google Scholar] [CrossRef]
- Kang, S.; Chae, J. Harmony search for the layout design of an unequal area facility. Expert Syst. Appl. 2017, 79, 269–281. [Google Scholar] [CrossRef]
- Tate, D.M.; Smith, A.E. Unequal-area facility layout by genetic search. IIE Trans. 1995, 27, 465–472. [Google Scholar] [CrossRef]
- Kulturel-Konak, S.; Smith, A.E.; Norman, B.A. Multi-objective tabu search using a multinomial probability mass function. Eur. J. Oper. Res. 2006, 169, 918–931. [Google Scholar] [CrossRef]
- Wong, K.Y. Solving facility layout problems using flexible bay structure representation and ant system algorithm. Expert Syst. Appl. 2010, 37, 5523–5527. [Google Scholar] [CrossRef]
- Kulturel-Konak, S.; Konak, A. A new relaxed flexible bay structure representation and particle swarm optimization for the unequal area facility layout problem. Eng. Optim. 2011, 43, 1263–1287. [Google Scholar] [CrossRef]
- Kulturel-Konak, S.; Konak, A. Unequal area flexible bay facility layout using ant colony optimisation. Int. J. Prod. Res. 2011, 49, 1877–1902. [Google Scholar] [CrossRef]
- Palomo-Romero, J.M.; Salas-Morera, L.; Garcia-Hernandez, L. An island model genetic algorithm for unequal area facility layout problems. Expert Syst. Appl. 2017, 68, 151–162. [Google Scholar] [CrossRef]
- Garcia-Hernandez, L.; Salas-Morera, L.; Garcia-Hernandez, J.A.; Salcedo-Sanz, S.; de Oliveira, J.V. Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Syst. Appl. 2019, 138, 112819. [Google Scholar] [CrossRef]
- Garcia-Hernandez, L.; Salas-Morera, L.; Carmona-Munoz, C.; Garcia-Hernandez, J.A.; Salcedo-Sanz, S. A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem. Eng. Appl. Artif. Intell. 2020, 89, 103445. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; He, K.; Jiang, S. Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Syst. Appl. 2018, 102, 179–192. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, Z.; Liu, S.; Gong, J. Multi-objective particle swarm optimization for multi-workshop facility layout problem. J. Manuf. Syst. 2019, 53, 32–48. [Google Scholar] [CrossRef]
- Pourvaziri, H.; Pierreval, H. Dynamic facility layout problem based on open queuing network theory. Eur. J. Oper. Res. 2017, 259, 538–553. [Google Scholar] [CrossRef]
- Turanoglu, B.; Akkaya, G. A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Syst. Appl. 2018, 98, 93–104. [Google Scholar] [CrossRef]
- Tayal, A.; Gunasekaran, A.; Singh, S.P.; Dubey, R.; Papadopoulos, T. Formulating and solving sustainable stochastic dynamic facility layout problem: A key to sustainable operations. Ann. Oper. Res. 2017, 253, 621–655. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, M.M.; Crispim, J.A.; de Sousa, J.P. A dynamic multi-objective approach for the reconfigurable multi-facility layout problem. J. Manuf. Syst. 2017, 42, 140–152. [Google Scholar] [CrossRef]
- Pourhassan, M.R.; Raissi, S. An integrated simulation-based optimization technique for multi-objective dynamic facility layout problem. J. Ind. Inf. Integr. 2017, 8, 49–58. [Google Scholar] [CrossRef]
- Montreuil, B. A modelling framework for integrating layout design and flow network design. In Material Handling’ 90; Springer: Berlin/Heidelberg, Germany, 1991; pp. 95–115. [Google Scholar]
- Meller, R.D.; Narayanan, V.; Vance, P.H. Optimal facility layout design. Oper. Res. Lett. 1998, 23, 117–127. [Google Scholar] [CrossRef]
- Sherali, H.D.; Fraticelli, B.M.; Meller, R.D. Enhanced model formulations for optimal facility layout. Oper. Res. 2003, 51, 629–644. [Google Scholar] [CrossRef]
- Castillo, I.; Westerlund, T. An ε-accurate model for optimal unequal-area block layout design. Comput. Oper. Res. 2005, 32, 429–447. [Google Scholar] [CrossRef]
- Bozer, Y.A.; Wang, C.T. A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. Eur. J. Oper. Res. 2012, 218, 382–391. [Google Scholar] [CrossRef]
- Chae, J.; Regan, A.C. Layout design problems with heterogeneous area constraints. Comput. Ind. Eng. 2016, 102, 198–207. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Equation | Complexity (# of Flops) | |
---|---|---|
Original Newton Equation (36) | ||
After 1st elimination (38) | ||
After 2nd elimination (42) | ||
After 3rd elimination (47) | ||
OS | Mac OS X (ver. 10.7.3) |
Processor | 3.4GHz Intel Core i7 |
Memory | 8GB 1333MHz DDR3 |
Language | MATLAB 2011Ra |
0.5 | |
0.5 | |
Problem | with Eliminations | without Eliminations |
---|---|---|
O7 | 0.1 | 4.2 |
O8 | 0.1 | 4.5 |
O9 | 0.1 | 4.7 |
VC10 | 0.2 | 4.8 |
Ba10 | 0.2 | 5.3 |
M15a | 0.2 | 7.8 |
M15s | 0.2 | 8.7 |
AB20 | 0.2 | 8.9 |
Tam30 | 0.2 | 10.1 |
SC30 | 0.2 | 12.6 |
SC35 | 0.2 | 13.9 |
Problem | Proposal | CPLEX | NEOS |
---|---|---|---|
O7 | 14 | 14 | 15 |
O8 | 14 | 13 | 22 |
O9 | 14 | 22 | 22 |
VC10 | 15 | 34 | 59 |
Ba10 | 15 | 37 | 89 |
M15a | 15 | 47 | 94 |
M15s | 15 | 66 | 136 |
AB20 | 15 | 77 | 162 |
Tam30 | 16 | 87 | 207 |
SC30 | 16 | 102 | 225 |
SC35 | 16 | 117 | 320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohmori, S.; Yoshimoto, K. A Primal-Dual Interior-Point Method for Facility Layout Problem with Relative-Positioning Constraints. Algorithms 2021, 14, 60. https://doi.org/10.3390/a14020060
Ohmori S, Yoshimoto K. A Primal-Dual Interior-Point Method for Facility Layout Problem with Relative-Positioning Constraints. Algorithms. 2021; 14(2):60. https://doi.org/10.3390/a14020060
Chicago/Turabian StyleOhmori, Shunichi, and Kazuho Yoshimoto. 2021. "A Primal-Dual Interior-Point Method for Facility Layout Problem with Relative-Positioning Constraints" Algorithms 14, no. 2: 60. https://doi.org/10.3390/a14020060
APA StyleOhmori, S., & Yoshimoto, K. (2021). A Primal-Dual Interior-Point Method for Facility Layout Problem with Relative-Positioning Constraints. Algorithms, 14(2), 60. https://doi.org/10.3390/a14020060