Estimating the Tour Length for the Close Enough Traveling Salesman Problem
Abstract
:1. Introduction
2. Regression Models and Fitness Measures
3. Regression Results
3.1. Best Subset Model Selection
3.2. Model Validation
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beardwood, J.; Halton, J.H.; Hammersley, J.M. The shortest path through many points. Math. Proc. Camb. Philos. Soc. 1959, 55, 299–327. [Google Scholar] [CrossRef]
- Christofides, N.; Eilon, S. Expected distances in distribution problems. J. Oper. Res. Soc. 1969, 20, 437–443. [Google Scholar] [CrossRef]
- Hindle, A.; Worthington, D. Models to estimate average route lengths in different geographical environments. J. Oper. Res. Soc. 2004, 55, 662–666. [Google Scholar] [CrossRef]
- Cavdar, B.; Sokol, J. A distribution-free TSP tour length estimation model for random graphs. Eur. J. Oper. Res. 2015, 243, 588–598. [Google Scholar] [CrossRef]
- Golden, B.; Alt, F. Interval estimation of a global optimum for large combinatorial problems. Nav. Res. Logist. Q. 1979, 26, 69–77. [Google Scholar] [CrossRef]
- Chien, T.W. Operational estimators for the length of a traveling salesman tour. Comput. Oper. Res. 1992, 19, 469–478. [Google Scholar] [CrossRef]
- Kwon, O.; Golden, B.; Wasil, E. Estimating the length of the optimal TSP tour: An empirical study using regression and neural networks. Comput. Oper. Res. 1995, 22, 1039–1046. [Google Scholar] [CrossRef]
- Basel, J.; Willemain, T.R. Random tours in the traveling salesman problem: Analysis and application. Comput. Optim. Appl. 2001, 20, 211–217. [Google Scholar] [CrossRef]
- Nicola, D.; Vetschera, R.; Dragomir, A. Total distance approximations for routing solutions. Comput. Oper. Res. 2019, 102, 67–74. [Google Scholar] [CrossRef]
- Poikonen, S.; Golden, B. Multi-visit drone routing problem. Comput. Oper. Res. 2020, 113, 104802. [Google Scholar] [CrossRef]
- Wang, X.; Golden, B.; Wasil, E. A Steiner zone variable neighborhood search heuristic for the close-enough traveling salesman problem. Comput. Oper. Res. 2019, 101, 200–219. [Google Scholar] [CrossRef]
- Bertsimas, D.; King, A.; Mazumder, R. Best subset selection via a modern optimization lens. Ann. Stat. 2016, 44, 813–852. [Google Scholar] [CrossRef] [Green Version]
- Behdani, B.; Smith, J.C. An integer-programming-based approach to the close-enough traveling salesman problem. INFORMS J. Comput. 2014, 26, 415–432. [Google Scholar] [CrossRef]
- Coutinho, W.P.; do Nascimento, R.Q.; Pessoa, A.A.; Subramanian, A. A branch-and-bound algorithm for the close-enough traveling salesman problem. INFORMS J. Comput. 2016, 28, 752–765. [Google Scholar] [CrossRef] [Green Version]
- Carrabs, F.; Cerrone, C.; Cerulli, R.; Gaudioso, M. A novel discretization scheme for the close-enough traveling salesman problem. Comput. Oper. Res. 2017, 78, 163–171. [Google Scholar] [CrossRef]
- Gulczynski, D.; Heath, J.; Price, C. The close enough traveling salesman problem: A discussion of several heuristics. In Perspectives in Operations Research: Papers in Honor of Saul Gass’ 80th Birthday; Springer: New York, NY, USA, 2006; pp. 271–283. [Google Scholar]
- Dong, J.; Yang, N.; Chen, M. Heuristic approaches for a TSP variant: The automatic meter reading shortest tour problem. In Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies; Springer: New York, NY, USA, 2007; pp. 145–163. [Google Scholar]
- Mennell, W.K. Heuristics for Solving Three Routing Problems: Close-Enough Traveling Salesman Problem, Close-Enough Vehicle Routing Problem, Sequence-Dependent Team Orienteering Problem. Ph.D. Thesis, Decision, Operations & Information Technologies, University of Maryland, College Park, MD, USA, 2009. [Google Scholar]
- Mennell, W.K.; Golden, B.; Wasil, E. A Steiner-zone heuristic for solving the close-enough traveling salesman problem. In Operations Research, Computing, and Homeland Defense; INFORMS: Catonsville, MD, USA, 2011; pp. 162–183. [Google Scholar]
- Silberholz, J.; Golden, B. The generalized traveling salesman problem: A new genetic algorithm approach. In Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies; Springer: New York, NY, USA, 2007; pp. 165–181. [Google Scholar]
- Yuan, B.; Orlowska, M.; Sadiq, S. On the optimal robot routing problem in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 2007, 19, 1252–1261. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xiao, M.-Q.; Ge, Y.-W.; Feng, D.-L.; Zhang, L.; Song, H.-F.; Tang, X.-L. A double-loop hybrid algorithm for the traveling salesman problem with arbitrary neighbourhoods. Eur. J. Oper. Res. 2018, 265, 65–80. [Google Scholar] [CrossRef]
- Sinha Roy, D.; Golden, B.; Wang, X.; Wasil, E. Instances for the Close Enough Traveling Salesman Problem. Data Set. 2021. Available online: http://doi.org/10.5281/zenodo.4632436 (accessed on 8 April 2021).
Independent Variable | Definition |
---|---|
n | Number of nodes |
A | Area of the smallest rectangle covering all nodes |
MinP | Minimum distance across all pairs of nodes |
MaxP | Maximum distance across all pairs of nodes |
VarP | Variance of distances across all pairs of nodes |
SumMinP | Sum of distances to the nearest neighbor of each node |
SumMaxP | Sum of distances to the farthest neighbor of each node |
MinM | Minimum distance to the average node |
MaxM | Maximum distance to the average node |
SumM | Sum of distances to the average node |
VarM | Variance of distances to the average node |
VarX×VarY | Product of variances of the nodes across two axes |
AvgR | Average radius of the customer service regions |
SZ | Number of Steiner zones of degree three and less that are not |
dominated by other Steiner zones of degree three and less |
Coefficient | Mean Values |
---|---|
Intercept () | 15.231 **** |
n () | 0.225 |
A () | 0.048 **** |
MinP () | −0.654 **** |
MaxP () | 0.224 ** |
VarP () | 0.106 * |
SumMinP () | 0.361 **** |
SumMaxP () | 0.036 ** |
MinM () | 0.459 *** |
MaxM () | −0.418 ** |
SumM () | −0.067 ** |
VarM () | 0.683 **** |
VarX×VarY () | 0.014 **** |
AvgR () | −9.092 **** |
SZ () | −0.026 |
Adjusted R2 | 0.921 |
MPE | −0.192% |
MAPE | 3.984% |
Variable | Number of Variables | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
n | * | * | * | |||||||||||
A | * | * | * | * | * | * | * | * | * | * | * | * | ||
MinP | * | * | * | * | * | * | * | |||||||
MaxP | * | * | * | * | * | * | ||||||||
VarP | * | * | * | |||||||||||
SumMinP | * | * | * | * | * | * | * | * | * | * | * | * | ||
SumMaxP | * | * | * | * | * | * | * | * | * | * | * | |||
MinM | * | * | * | * | * | * | * | * | ||||||
MaxM | * | * | * | * | * | |||||||||
SumM | * | * | * | * | * | |||||||||
VarM | * | * | * | * | * | * | * | * | * | * | ||||
VarX×VarY | * | * | * | * | * | * | * | * | * | |||||
AvgR | * | * | * | * | * | * | * | * | * | * | * | * | * | |
SZ | * |
Best Subset Model | Adjusted R2 | Mallows’s | BIC |
---|---|---|---|
1-variable | 0.598 | 3189.7 | −698 |
2-variable | 0.787 | 1320.5 | −1189 |
3-variable | 0.876 | 447.1 | −1605 |
4-variable | 0.899 | 218.1 | −1762 |
5-variable | 0.911 | 107.7 | −1850 |
6-variable | 0.918 | 42.1 | −1906 |
7-variable | 0.919 | 30.2 | −1912 |
8-variable | 0.920 | 16.9 | −1921 |
9-variable | 0.921 | 15.0 | −1918 |
10-variable | 0.921 | 13.0 | −1916 |
11-variable | 0.921 | 14.5 | −1911 |
12-variable | 0.921 | 15.7 | −1906 |
13-variable | 0.921 | 16.9 | −1901 |
14-variable | 0.921 | 18.0 | −1895 |
Coefficient | Best Adjusted R2 | Best Mallows’s | Best BIC |
---|---|---|---|
Intercept () | 15.320 **** | 15.485 **** | 16.334 **** |
n () | 0.188 | ||
A () | 0.048 **** | 0.046 **** | 0.044 **** |
MinP () | −0.668 **** | −0.734 **** | −0.674 **** |
MaxP () | 0.224 ** | 0.230 ** | |
VarP () | 0.101 * | ||
SumMinP () | 0.359 **** | 0.362 **** | 0.362 **** |
SumMaxP () | 0.036 ** | 0.025 **** | 0.027 **** |
MinM () | 0.455 *** | 0.508 **** | 0.498 **** |
MaxM () | −0.410 ** | −0.273 ** | |
SumM () | −0.064 ** | ||
VarM () | 0.685 **** | 0.805 **** | 0.797 **** |
VarX×VarY () | 0.014 **** | 0.011 **** | 0.012 **** |
AvgR () | −9.059 **** | −9.059 **** | −9.059 **** |
SZ () | |||
Number of variables | 13 | 10 | 8 |
Adjusted R2 | 0.921 | 0.921 | 0.920 |
Mallows’s | 13.0 | ||
BIC | −1921 | ||
MPE | −0.192% | −0.194% | −0.202% |
MAPE | 3.983% | 3.995% | 4.008% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha Roy, D.; Golden, B.; Wang, X.; Wasil, E. Estimating the Tour Length for the Close Enough Traveling Salesman Problem. Algorithms 2021, 14, 123. https://doi.org/10.3390/a14040123
Sinha Roy D, Golden B, Wang X, Wasil E. Estimating the Tour Length for the Close Enough Traveling Salesman Problem. Algorithms. 2021; 14(4):123. https://doi.org/10.3390/a14040123
Chicago/Turabian StyleSinha Roy, Debdatta, Bruce Golden, Xingyin Wang, and Edward Wasil. 2021. "Estimating the Tour Length for the Close Enough Traveling Salesman Problem" Algorithms 14, no. 4: 123. https://doi.org/10.3390/a14040123
APA StyleSinha Roy, D., Golden, B., Wang, X., & Wasil, E. (2021). Estimating the Tour Length for the Close Enough Traveling Salesman Problem. Algorithms, 14(4), 123. https://doi.org/10.3390/a14040123