Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds
Abstract
:1. Introduction
2. Literature Review
3. Evolutionary Metaheuristics for MTCP
3.1. A GA-Based Approach
3.2. A BRKGA-Based Approach
4. Results and Discussion
4.1. Instances
4.2. GA and BRKGA Hyper-Parameter Configuration
4.3. Comparing BRKGA and a Commercial Laser Cut Machine Software
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BRKGA | Biased random-key genetic algorithm |
CCP | Continuous cutting problem |
C&P | Cutting and packing |
CPD | Cut path determination |
ECP | Endpoint cutting problem |
GA | Genetic algorithm |
GTSP | Generalized traveling salesman problem |
ICP | Intermittent cutting problem |
MTCP | Minimum time cut path |
NRP | Node routing problem |
SVG | Scalable vector graphics |
TPP | Touring polygons problem |
TSP | Traveling salesman problem |
TSP-N | Traveling salesman problem with neighborhoods |
Appendix A
Appendix A.1
Appendix A.2
Appendix B
Appendix B.1
Instances | GA | BRKGA | |||
---|---|---|---|---|---|
FO | TIME | FO | TIME | ||
albano | Best | 106.38 | 300 s | 104.62 | 300 s |
Average | 114.5 | 300 s | 110.94 | 300 s | |
blaz1 | Best | 154.88 | 300 s | 154.22 | 294 s |
Average | 158.98 | 300 s | 155.2 | 300 s | |
blaz2 | Best | 275.27 | 189 s | 269.72 | 300 s |
Average | 290.93 | 300 s | 275.81 | 300 s | |
blaz3 | Best | 428.38 | 300 s | 419.32 | 300 s |
Average | 454.98 | 300 s | 435.34 | 72 s | |
dighe1 | Best | 70.47 | 300 s | 70.53 | 124 s |
Average | 71.09 | 25 s | 70.87 | 19 s | |
dighe2 | Best | 53.87 | 205 s | 53.87 | 100 s |
Average | 54.42 | 34 s | 54.03 | 15 s | |
fu | Best | 23.86 | 300 s | 23.82 | 164 s |
Average | 24.23 | 61 s | 23.98 | 26 s | |
inst_01_10pol | Best | 126.97 | 131 s | 126.97 | 158 s |
Average | 127.47 | 188 s | 127.34 | 14 s | |
inst_01_16pol | Best | 76.73 | 211 s | 76.58 | 300 s |
Average | 78.08 | 26 s | 77.48 | 20 s | |
inst_01_2pol | Best | 33.11 | 4 s | 33.11 | 4 s |
Average | 33.11 | 20 s | 33.11 | 23 s | |
inst_01_3pol | Best | 39.24 | 5 s | 39.24 | 4 s |
Average | 39.24 | 25 s | 39.24 | 27 s | |
inst_01_4pol | Best | 57.36 | 5 s | 57.36 | 6 s |
Average | 57.36 | 32 s | 57.36 | 34 s | |
inst_01_5pol | Best | 69.61 | 8 s | 69.61 | 41 s |
Average | 69.73 | 7 s | 69.61 | 86 s | |
inst_01_6pol | Best | 81.73 | 139 s | 81.73 | 103 s |
Average | 81.85 | 62 s | 81.85 | 48 s | |
inst_01_7pol | Best | 96.85 | 11 s | 96.85 | 9 s |
Average | 96.98 | 69 s | 97.23 | 8 s | |
inst_01_8pol | Best | 105.72 | 229 s | 105.72 | 127 s |
Average | 106.10 | 289 s | 106.10 | 10 s | |
inst_01_9pol | Best | 123.97 | 210 s | 123.97 | 136 s |
Average | 124.47 | 85 s | 124.47 | 10 s | |
inst_01_26pol_hole | Best | 142.79 | 300 s | 137.50 | 300 s |
Average | 162.66 | 300 s | 155.83 | 300 s | |
rco1 | Best | 140.52 | 300 s | 140.17 | 248 s |
Average | 143.11 | 32 s | 141.01 | 233 s | |
rco2 | Best | 274.43 | 264 s | 270.16 | 300 s |
Average | 288.92 | 300 s | 275.06 | 231 s | |
rco3 | Best | 403.65 | 300 s | 393.92 | 300 s |
Average | 429.06 | 300 s | 407.85 | 64 s | |
shapes2 | Best | 218.02 | 210 s | 214.73 | 300 s |
Average | 228.10 | 300 s | 218.98 | 52 s | |
shapes4 | Best | 425.87 | 300 s | 419.83 | 300 s |
Average | 461.70 | 300 s | 439.87 | 300 s | |
spfc_instance | Best | 144.94 | 300 s | 143.53 | 201 s |
Average | 150.18 | 300 s | 145.56 | 183 s | |
trousers | Best | 271.78 | 300 s | 256.56 | 300 s |
Average | 301.36 | 300 s | 297.85 | 300 s |
Appendix B.2
Instances | GA | BRKGA | |||
---|---|---|---|---|---|
FO | TIME | FO | TIME | ||
albano | Best | 109.83 | 300 s | 107.23 | 300 s |
Average | 119.43 | 300 s | 113.52 | 300 s | |
blaz1 | Best | 162.57 | 279 s | 161.86 | 300 s |
Average | 166.06 | 300 s | 163.13 | 300 s | |
blaz2 | Best | 296.30 | 300 s | 291.57 | 300 s |
Average | 309.95 | 300 s | 295.52 | 243 s | |
blaz3 | Best | 499.18 | 300 s | 489.88 | 300 s |
Average | 531.40 | 300 s | 506.38 | 77 s | |
dighe1 | Best | 96.53 | 300 s | 96.03 | 300 s |
Average | 98.65 | 37s | 97.47 | 35s | |
dighe2 | Best | 78.91 | 90 s | 78.47 | 300 s |
Average | 80.18 | 56 s | 79.65 | 23 s | |
fu | Best | 28.04 | 297 s | 27.95 | 295 s |
Average | 28.69 | 300 s | 28.09 | 23 s | |
inst_01_10pol | Best | 193.18 | 300 s | 192.61 | 149 s |
Average | 196.74 | 300 s | 194.47 | 27 s | |
inst_01_16pol | Best | 173.04 | 300 s | 171.16 | 300 s |
Average | 180.86 | 83 s | 176.69 | 68 s | |
inst_01_2pol | Best | 36.04 | 4 s | 36.04 | 4 s |
Average | 36.04 | 21 s | 36.04 | 25 s | |
inst_01_3pol | Best | 48.09 | 6 s | 48.09 | 33 s |
Average | 48.09 | 29 s | 48.09 | 33 s | |
inst_01_4pol | Best | 72.13 | 44 s | 72.13 | 90 s |
Average | 72.33 | 7 s | 72.38 | 7 s | |
inst_01_5pol | Best | 90.13 | 60 s | 90.13 | 56 s |
Average | 90.38 | 13 s | 90.73 | 9 s | |
inst_01_6pol | Best | 114.2 | 193 s | 114.2 | 151 s |
Average | 114.65 | 78 s | 114.62 | 72 s | |
inst_01_7pol | Best | 138.31 | 250 s | 138.31 | 180 s |
Average | 139.23 | 25 s | 139.59 | 12 s | |
inst_01_8pol | Best | 156.49 | 264 s | 156.44 | 200 s |
Average | 157.74 | 272 s | 157.81 | 21 s | |
inst_01_9pol | Best | 186.61 | 300 s | 186.41 | 273 s |
Average | 189.36 | 27 s | 187.83 | 16 s | |
inst_01_26pol_hole | Best | 198.97 | 300 s | 192.89 | 295 s |
Average | 216.82 | 300 s | 205.02 | 300 s | |
rco1 | Best | 162.74 | 300 s | 162.59 | 219 s |
Average | 164.99 | 25 s | 163.12 | 191 s | |
rco2 | Best | 322.09 | 300 s | 319.31 | 300 s |
Average | 334.81 | 300 s | 321.63 | 300 s | |
rco3 | Best | 489.66 | 175 s | 480.36 | 300 s |
Average | 515.63 | 300 s | 492.81 | 59 s | |
shapes2 | Best | 229.47 | 222 s | 227.79 | 300 s |
Average | 238.31 | 52 s | 230.85 | 42 s | |
shapes4 | Best | 455.2 | 300 s | 447.99 | 300 s |
Average | 481.66 | 152 s | 461.88 | 300 s | |
spfc_instance | Best | 148.79 | 300 s | 147.33 | 300 s |
Average | 153.36 | 300 s | 149.28 | 157 s | |
trousers | Best | 303.51 | 300 s | 285.76 | 300 s |
Average | 338.13 | 300 s | 330.06 | 300 s |
Appendix C
Appendix C.1
Instances | Relation 1 | Relation 2 | Relation 3 | ||||
---|---|---|---|---|---|---|---|
FO | TIME | FO | TIME | FO | TIME | ||
albano | Best | 116.92 | 300 s | 116.62 | 300 s | 108,41 | 300 s |
Average | 117.12 | 300 s | 116.92 | 300 | 111.41 | 300 s | |
blaz1 | Best | 154.29 | 300 s | 154.29 | 300 s | 154.64 | 300 s |
Average | 154.71 | 300 s | 154.74 | 277 s | 154.71 | 141 s | |
blaz2 | Best | 280.23 | 300 s | 275.95 | 300 s | 269.8 | 300 s |
Average | 281.7 | 300 s | 277.85 | 300 s | 270.91 | 300 s | |
blaz3 | Best | 457.75 | 300 s | 450.12 | 300 s | 426.21 | 300 s |
Average | 460.13 | 300 s | 453.97 | 300 s | 428.21 | 300 s | |
dighe1 | Best | 70.54 | 281 s | 70.53 | 269 s | 70.53 | 124 s |
Average | 70.73 | 277 s | 70.69 | 300 s | 70.69 | 128 s | |
dighe2 | Best | 53.88 | 222 s | 53.90 | 202 s | 53.90 | 92 s |
Average | 53.96 | 191 s | 54 | 186 s | 54 | 93 s | |
fu | Best | 23.84 | 300 s | 23.83 | 300 s | 23.82 | 164 s |
Average | 23.88 | 300 s | 23.90 | 300 s | 23.91 | 168 s | |
instance_01_10pol | Best | 126.97 | 202 s | 126.97 | 204 s | 126.97 | 85 s |
Average | 127.22 | 175 s | 127.09 | 183 s | 127.22 | 90 s | |
instance_01_16pol | Best | 76.66 | 300 s | 76.66 | 279 s | 76.73 | 135 s |
Average | 76.81 | 300 s | 76.73 | 294 s | 76.88 | 130 s | |
instance_01_2pol | Best | 33.11 | 48 s | 33.11 | 50 s | 33.11 | 23 s |
Average | 33.11 | 48 s | 33.11 | 50 s | 33.11 | 23 s | |
instance_01_3pol | Best | 39.24 | 55 s | 39.24 | 57 s | 39.24 | 25 s |
Average | 39.24 | 57 s | 39.24 | 58 s | 39.24 | 26 s | |
instance_01_4pol | Best | 57.36 | 69 s | 57.36 | 69 s | 57.36 | 32 s |
Average | 57.36 | 72 s | 57.36 | 72 s | 57.36 | 34 s | |
instance_01_5pol | Best | 69.61 | 86 s | 69.61 | 84 s | 69.61 | 40 s |
Average | 69.61 | 91 s | 69.61 | 90 s | 69.61 | 40 s | |
instance_01_6pol | Best | 81.73 | 105 s | 81.73 | 102 s | 81.73 | 45 s |
Average | 81.73 | 107 s | 81.73 | 108 s | 81.73 | 52 s | |
instance_01_7pol | Best | 96.85 | 156 s | 96.85 | 165 s | 96.85 | 84 s |
Average | 96.98 | 152 s | 96.98 | 148 s | 96.98 | 152 s | |
instance_01_8pol | Best | 105.72 | 138 s | 105.72 | 140 s | 105.72 | 60 s |
Average | 105.85 | 148 s | 105.72 | 142 s | 105.85 | 68 s | |
instance_01_9pol | Best | 123.97 | 165 s | 123.97 | 249 s | 123.97 | 70 s |
Average | 124.10 | 173 s | 124.10 | 175 s | 124.10 | 74 s | |
instance_artificial_01_26pol_hole | Best | 168.32 | 300 s | 167.53 | 300 s | 157.02 | 300 s |
Average | 169.03 | 300 s | 168.31 | 300 s | 165.78 | 300 s | |
rco1 | Best | 140.17 | 248 s | 140.66 | 251 s | 140.52 | 126 s |
Average | 140.59 | 264 s | 140.94 | 263 s | 140.73 | 113 s | |
rco2 | Best | 276.67 | 300 s | 274.08 | 300 s | 270.86 | 300 s |
Average | 278.63 | 300 s | 274.85 | 300 s | 271.63 | 300 s | |
rco3 | Best | 421.50 | 300 s | 417.93 | 300 s | 395.32 | 300 s |
Average | 427.17 | 300 s | 420.59 | 300 s | 398.33 | 300 s | |
shapes2 | Best | 216.77 | 300 s | 215.17 | 300 s | 215.27 | 274 s |
Average | 218.61 | 300 s | 216.53 | 300 s | 216.40 | 281 s | |
shapes4 | Best | 467.54 | 300 s | 454.41 | 300 s | 429.51 | 300 s |
Average | 469.71 | 300 s | 464.67 | 300 s | 432.10 | 300 s | |
spfc_instance | Best | 143.90 | 300 s | 143.63 | 300 s | 143.69 | 244 s |
Average | 144.32 | 300 s | 144.17 | 300 s | 144.16 | 271 s | |
trousers | Best | 307.26 | 300 s | 308.34 | 300 s | 307,56 | 300 s |
Average | 309.44 | 300 s | 309.46 | 300 s | 308.75 | 300 s |
Appendix C.2
Instances | Relation 1 | Relation 2 | Relation 3 | ||||
---|---|---|---|---|---|---|---|
FO | TIME | FO | TIME | FO | TIME | ||
albano | Best | 121.43 | 300 s | 121.23 | 300 s | 111.91 | 300 s |
Average | 122.29 | 300 s | 122.13 | 300 s | 115.86 | 300 s | |
blaz1 | Best | 162.19 | 300 s | 161.86 | 300 s | 162.31 | 171 s |
Average | 162.64 | 300 s | 162.66 | 300 s | 162.80 | 173 s | |
blaz2 | Best | 297.44 | 300 s | 293.96 | 300 s | 291.57 | 300 s |
Average | 299.09 | 300 s | 295.32 | 300 s | 292.68 | 300 s | |
blaz3 | Best | 528.67 | 300 s | 522.09 | 300 s | 492.80 | 300 s |
Average | 532.83 | 300 s | 525.17 | 300 s | 496.80 | 300 s | |
dighe1 | Best | 96.03 | 300 s | 96.25 | 300 s | 96.21 | 194 s |
Average | 96.22 | 300 s | 96.45 | 300 s | 96.30 | 202 s | |
dighe2 | Best | 78.47 | 300 s | 78.78 | 300 s | 78.64 | 152 s |
Average | 78.92 | 300 s | 78.91 | 300 s | 79.07 | 159 s | |
fu | Best | 27.96 | 300 s | 27.97 | 248 s | 28.03 | 151 s |
Average | 28.03 | 291 s | 28.04 | 263 s | 28.03 | 151 s | |
instance_01_10pol | Best | 192.64 | 298 s | 192.83 | 260 s | 192.79 | 129 s |
Average | 193.07 | 300 s | 193.48 | 269 s | 193.16 | 138 s | |
instance_01_16pol | Best | 182.66 | 300 s | 181.72 | 300 s | 173.45 | 300 s |
Average | 183.25 | 300 s | 182.56 | 300 s | 174.99 | 300 s | |
instance_01_2pol | Best | 36.04 | 49 s | 36.04 | 52 s | 36.04 | 23 s |
Average | 36.04 | 50 s | 36.04 | 50 s | 36.04 | 23 s | |
instance_01_3pol | Best | 48.09 | 68 s | 48.09 | 71 s | 48.09 | 32 s |
Average | 48.09 | 69 s | 48.09 | 71 s | 48.09 | 33 s | |
instance_01_4pol | Best | 72.13 | 104 s | 72.13 | 96 s | 72.13 | 46 s |
Average | 72.13 | 105 s | 72.13 | 96 s | 72.13 | 47 s | |
instance_01_5pol | Best | 90.13 | 135 s | 90.13 | 122 s | 90.13 | 53 s |
Average | 90.15 | 119 s | 90.18 | 118 s | 90.18 | 56 s | |
instance_01_6pol | Best | 114.37 | 158 s | 114.20 | 156 s | 114.37 | 72 s |
Average | 114.47 | 146 s | 114.37 | 140 s | 114.47 | 69 s | |
instance_01_7pol | Best | 138.39 | 184 s | 138.39 | 186 s | 138.39 | 82 s |
Average | 138,55 | 172 s | 138.55 | 179 s | 138.60 | 95 s | |
instance_01_8pol | Best | 156.49 | 218 s | 156.54 | 224 s | 156.49 | 121 s |
Average | 156.69 | 223 s | 156.66 | 244 s | 156.66 | 137 s | |
instance_01_9pol | Best | 186.41 | 273 s | 186.66 | 248 s | 186.78 | 118 s |
Average | 186.88 | 250 s | 187.16 | 236 s | 187.18 | 103 s | |
instance_artificial_01_26pol_hole | Best | 218.87 | 300 s | 219 | 300 s | 218.27 | 300 s |
Average | 219.71 | 300 s | 219.55 | 300 s | 219.12 | 300 s | |
rco1 | Best | 162.96 | 276 s | 162.63 | 221 s | 162.71 | 111 s |
Average | 163.33 | 232 s | 163.12 | 249 s | 163.21 | 113 s | |
rco2 | Best | 321.37 | 300 s | 317.31 | 300 s | 317.60 | 273 s |
Average | 322.51 | 300 s | 318.73 | 300 s | 318.79 | 265 s | |
rco3 | Best | 507.25 | 300 s | 492.88 | 300 s | 480.36 | 300 s |
Average | 509.64 | 300 s | 500.92 | 300 s | 482.03 | 300 s | |
shapes2 | Best | 228.83 | 300 s | 227.79 | 300 s | 227.93 | 243 s |
Average | 229.98 | 300 s | 228.18 | 300 s | 228.57 | 267 s | |
shapes4 | Best | 478.50 | 300 s | 475.20 | 300 s | 454.27 | 300 s |
Average | 479.27 | 300 s | 477.46 | 300 s | 455.44 | 300 s | |
spfc_instance | Best | 147.33 | 300 s | 147.38 | 300 s | 148.06 | 180 s |
Average | 148.10 | 300 s | 148.09 | 300 s | 148.36 | 202 s | |
trousers | Best | 347.41 | 300 s | 346.45 | 300 s | 345.94 | 300 s |
Average | 348.69 | 300 s | 347.65 | 300 s | 346.61 | 300 s |
Appendix D
Appendix D.1
Instances | BRKGA | LASERCUT | GAIN | |||
---|---|---|---|---|---|---|
(C) | (S) | (C) | (S) | (C) | (S) | |
albano | 111.41 | 115.86 | 118.66 | 118.71 | +ftg7.25 | +2.85 |
blaz1 | 154.71 | 162.80 | 177.51 | 178.05 | +22.8 | +15.25 |
blaz2 | 270.91 | 292.68 | 357.40 | 323.54 | +86.49 | +30.86 |
blaz3 | 428.21 | 496.80 | 537.55 | 538.97 | +109.34 | +42.17 |
dighe1 | 70.69 | 96.30 | 113.83 | 114.51 | +43.14 | +18.21 |
dighe2 | 54 | 79.07 | 88.22 | 88.58 | +34.22 | +9.51 |
fu | 23.91 | 28.03 | 35.05 | 35.81 | +11.14 | +7.78 |
inst_01_10pol | 127.22 | 193.16 | 200.13 | 200.59 | +72.91 | +7.43 |
inst_01_16pol | 76.88 | 174.99 | 124.91 | 185.11 | +48.03 | +10.12 |
inst_01_2pol | 33.11 | 36.04 | 37 | 37.15 | +3.89 | +1.11 |
inst_01_3pol | 39.24 | 48.09 | 49 | 50.04 | +9.76 | +1.95 |
inst_01_4pol | 57.36 | 72.13 | 74.57 | 74.64 | +24.37 | +2.51 |
inst_01_5pol | 69.61 | 90.18 | 93.98 | 94.61 | +24.37 | +4.43 |
inst_01_6pol | 81.73 | 114.47 | 118.35 | 119.51 | +36.62 | +5.04 |
inst_01_7pol | 96.98 | 138.60 | 143.74 | 144.06 | +46.76 | +5.46 |
inst_01_8pol | 105.85 | 156.66 | 162.04 | 162.48 | +56.19 | +5.82 |
inst_01_9pol | 124.10 | 187.18 | 193.30 | 193.85 | +69.20 | +6.67 |
inst_01_26pol_hole | 165.78 | 219.12 | 213.88 | 213.03 | +48.10 | −6.09 |
rco1 | 140.73 | 163.21 | 174.21 | 174.61 | +33.48 | +11.40 |
rco2 | 271.63 | 318.79 | 349.94 | 352.05 | +78.31 | +33.26 |
rco3 | 398.33 | 482.03 | 526.18 | 526.90 | +127.85 | +44.87 |
shapes2 | 216.40 | 228.57 | 245.12 | 246.72 | +28.70 | +18.15 |
shapes4 | 432.10 | 455.44 | 485.45 | 486.69 | +53.35 | +31.25 |
spfc_instance | 144.16 | 148.36 | 175.76 | 165.90 | +31.60 | +17.54 |
trousers | 308.75 | 346.61 | 302.59 | 303.54 | −6.16 | −43.07 |
References
- Júnior, B.A.; Pinheiro, P.R. Approaches to tackle the nesting problems. In Artificial Intelligence Perspectives in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 285–295. [Google Scholar]
- Pisinger, D. Heuristics for the container loading problem. Eur. J. Oper. Res. 2002, 141, 382–392. [Google Scholar] [CrossRef]
- Araújo, L.J.; Panesar, A.; Özcan, E.; Atkin, J.; Baumers, M.; Ashcroft, I. An experimental analysis of deepest bottom-left-fill packing methods for additive manufacturing. Int. J. Prod. Res. 2020, 58, 6917–6933. [Google Scholar] [CrossRef]
- Araújo, L.J.; Özcan, E.; Atkin, J.A.; Baumers, M. Analysis of irregular three-dimensional packing problems in additive manufacturing: A new taxonomy and dataset. Int. J. Prod. Res. 2019, 57, 5920–5934. [Google Scholar] [CrossRef]
- Moreira, L.M.; Oliveira, J.F.; Gomes, A.M.; Ferreira, J.S. Heuristics for a dynamic rural postman problem. Comput. Oper. Res. 2007, 34, 3281–3294. [Google Scholar] [CrossRef]
- Manber, U.; Israni, S. Pierce point minimization and optimal torch path determination in flame cutting. J. Manuf. Syst. 1984, 3, 81–89. [Google Scholar] [CrossRef]
- Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007, 183, 1109–1130. [Google Scholar] [CrossRef]
- Araújo, L.J.; Pinheiro, P.R. Applying backtracking heuristics for constrained two-dimensional guillotine cutting problems. In Proceedings of the International Conference on Information Computing and Applications, Ho Chi Minh City, Vietnam, 5–7 December 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 113–120. [Google Scholar]
- Hopper, E.; Turton, B.C. A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artif. Intell. Rev. 2001, 16, 257–300. [Google Scholar] [CrossRef]
- Raggenbass, A.; Reissner, J. Automatic Generation of NC Production Plans in Stamping and Laser Cutting. CIRP Ann. 1991, 40, 247–250. [Google Scholar] [CrossRef]
- Raggenbass, A.; Reissner, J. Stamping—Laser Combination in Sheet Processing. CIRP Ann. 1989, 38, 291–294. [Google Scholar] [CrossRef]
- Amaro Júnior, B.; Pinheiro, P.R.; Coelho, P.V. A Parallel Biased Random-Key Genetic Algorithm with Multiple Populations Applied to Irregular Strip Packing Problems. Available online: https://www.hindawi.com/journals/mpe/2017/1670709/ (accessed on 8 October 2021).
- Leao, A.A.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of mathematical models. Eur. J. Oper. Res. 2020, 282, 803–822. [Google Scholar] [CrossRef]
- Labrada-Nueva, Y.; Cruz-Rosales, M.H.; Rendón-Mancha, J.M.; Rivera-López, R.; Eraña-Díaz, M.L.; Cruz-Chávez, M.A. Overlap Detection in 2D Amorphous Shapes for Paper Optimization in Digital Printing Presses. Mathematics 2021, 9, 1033. [Google Scholar] [CrossRef]
- Silva, E.F.; Oliveira, L.T.; Oliveira, J.F.; Toledo, F.M.B. Exact approaches for the cutting path determination problem. Comput. Oper. Res. 2019, 112, 104772. [Google Scholar] [CrossRef]
- Lee, M.K.; Kwon, K.B. Cutting path optimization in CNC cutting processes using a two-step genetic algorithm. Int. J. Prod. Res. 2006, 44, 5307–5326. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Construction heuristics for generating tool paths for laser cutters. Int. J. Prod. Res. 2014, 52, 5965–5984. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D.; Laguna, M.; Vossen, T. An improvement heuristic framework for the laser cutting tool path problem. Int. J. Prod. Res. 2015, 53, 1761–1776. [Google Scholar] [CrossRef]
- Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res. 2016, 23, 287–320. [Google Scholar] [CrossRef] [Green Version]
- Hoeft, J.; Palekar, U.S. Heuristics for the plate-cutting traveling salesman problem. IIE Trans. 1997, 29, 719–731. [Google Scholar] [CrossRef]
- Arkin, E.M.; Hassin, R. Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 1994, 55, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Veeramani, D.; Kumar, S. Optimization of the nibbling operation on an NC turret punch press. Int. J. Prod. Res. 1998, 36, 1901–1916. [Google Scholar] [CrossRef]
- Garfinkel, R.S.; Webb, I.R. On crossings, the Crossing Postman Problem, and the Rural Postman Problem. Networks 1999, 34, 173–180. [Google Scholar] [CrossRef]
- Rodrigues, A.; Soeiro Ferreira, J. Cutting path as a Rural Postman Problem: Solutions by Memetic Algorithms. IJCOPI 2012, 3, 31–46. [Google Scholar]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. A review of cutting path algorithms for laser cutters. Int. J. Adv. Manuf. Technol. 2016, 87, 1865–1884. [Google Scholar] [CrossRef]
- Chvátal, V.; Cook, W.; Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a large-scale traveling-salesman problem. In 50 Years of Integer Programming 1958–2008; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–28. [Google Scholar]
- Ahadi, A.; Mozafari, A.; Zarei, A. Touring a sequence of disjoint polygons: Complexity and extension. Theor. Comput. Sci. 2014, 556, 45–54. [Google Scholar] [CrossRef]
- Khan, W.; Hayhurst, D. Two and Three-Dimensional Path Optimization for Production Machinery. J. Manuf. Sci. Eng. Trans. Asme J. Manuf. Sci. Eng. 2000, 122. [Google Scholar] [CrossRef]
- Erdos, G.; Kemény, Z.; Kovacs, A.; Váncza, J. Planning of Remote Laser Welding Processes. Procedia CIRP 2013, 7, 222–227. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Y.; Liu, J.; Zhou, Z. Integrated and concurrent approach for compound sheet metal cutting and punching. Int. J. Prod. Res. 2010, 39, 1095–1112. [Google Scholar] [CrossRef]
- Yu, W.; Lu, L. A route planning strategy for the automatic garment cutter based on genetic algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014; pp. 379–386. [Google Scholar] [CrossRef]
- Bobade, S.; Badgujar, T.Y.B. A State Of Art In A Sheet Metal Stamping Forming Technology-An Overview. Int. J. Adv. Res. Innov. Ideas Educ. 2017, 3760–3770. [Google Scholar]
- Han, G.; Na, S. A study on torch path planning in laser cutting processes part 2: Cutting path optimization using simulated annealing. J. Manuf. Syst. 1999, 18, 62–70. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Cutting path optimization using tabu search. In Key Engineering Materials; Trans Tech Publ: Zurich, Switzerland, 2011; Volume 473, pp. 739–748. [Google Scholar]
- Golden, B.L.; Wong, R.T. Capacitated arc routing problems. Networks 1981, 11, 305–315. [Google Scholar] [CrossRef]
- Usberti, F.L.; França, P.M.; França, A.L.M. The open capacitated arc routing problem. Comput. Oper. Res. 2011, 38, 1543–1555. [Google Scholar] [CrossRef] [Green Version]
- Holland, J. Adaptation In Natural And Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Hopper, E.; Turton, B. A genetic algorithm for a 2D industrial packing problem. Comput. Ind. Eng. 1999, 37, 375–378. [Google Scholar] [CrossRef]
- Onwubolu, G.; Mutingi, M. A genetic algorithm approach for the cutting stock problem. J. Intell. Manuf. 2003, 14, 209–218. [Google Scholar] [CrossRef]
- Park, J.Y.; Seo, J.J. A Study on Cutting Path Optimization Using Genetic Algorithm. J. Ocean Eng. Technol. 2009, 23, 67–70. [Google Scholar]
- Deshpande, A.S.; Kelkar, R.B. Advanced genetic operators and techniques: An analysis of dominance & diploidy, reordering operator in genetic search. In Proceedings of the Ninth WSEAS International Conference on Evolutionary Computing, Sofia, Bulgaria, 2–4 May 2008; pp. 27–33. [Google Scholar]
- Blickle, T.; Thiele, L. A Mathematical Analysis of Tournament Selection. In Proceedings of the 6th International Conference on Genetic Algorithms; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; pp. 9–16. [Google Scholar]
- Goldberg, D.E.; Lingle, R. AllelesLociand the Traveling Salesman Problem. In Proceedings of the 1st International Conference on Genetic Algorithms; L. Erlbaum Associates Inc.: Mahwah, NJ, USA, 1985; pp. 154–159. [Google Scholar]
- Bean, J.C. Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA J. Comput. 1994, 6, 154–160. [Google Scholar] [CrossRef]
- Resende, M. Biased random-key genetic algorithms with applications in telecommunications. TOP 2010, 20, 130–153. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Resende, M.G.; Toso, R.F. An experimental comparison of biased and unbiased random-key genetic algorithms. Pesqui. Oper. 2014, 34, 143–164. [Google Scholar] [CrossRef]
- Spears, V.M.; Jong, K.A.D. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 230–236. [Google Scholar]
- Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [Google Scholar] [CrossRef]
- Santucci, V.; Baioletti, M.; Milani, A. An algebraic framework for swarm and evolutionary algorithms in combinatorial optimization. Swarm Evol. Comput. 2020, 55, 100673. [Google Scholar] [CrossRef]
- Baioletti, M.; Milani, A.; Santucci, V. An algebraic approach for the search space of permutations with repetition. In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), Seville, Spain, 15–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 18–34. [Google Scholar]
Instance | Vertices | Edges | Items | |||||
---|---|---|---|---|---|---|---|---|
Original | Adapted | |||||||
(C) | (S) | (C) | (S) | (C) | (S) | (C) | (S) | |
albano | 156 | 164 | 164 | 164 | 173 | 164 | 24 | 24 |
blaz1 | 39 | 44 | 44 | 44 | 46 | 44 | 7 | 7 |
blaz2 | 70 | 80 | 88 | 80 | 89 | 80 | 14 | 13 |
blaz3 | 97 | 132 | 132 | 132 | 130 | 132 | 21 | 21 |
dighe1 | 20 | 54 | 46 | 54 | 38 | 54 | 15 | 15 |
dighe2 | 20 | 46 | 38 | 46 | 30 | 46 | 10 | 10 |
fu | 37 | 43 | 43 | 43 | 51 | 43 | 12 | 12 |
inst_01_10pol | 20 | 40 | 39 | 40 | 29 | 40 | 10 | 10 |
inst_01_16pol | 27 | 128 | 64 | 128 | 42 | 128 | 16 | 32 |
inst_01_2pol | 7 | 8 | 8 | 8 | 8 | 8 | 2 | 2 |
inst_01_3pol | 8 | 12 | 12 | 12 | 10 | 12 | 3 | 3 |
inst_01_4pol | 10 | 16 | 16 | 16 | 13 | 16 | 4 | 4 |
inst_01_5pol | 12 | 20 | 19 | 20 | 16 | 20 | 5 | 5 |
inst_01_6pol | 13 | 24 | 23 | 24 | 18 | 24 | 6 | 6 |
inst_01_7pol | 15 | 28 | 27 | 28 | 21 | 28 | 7 | 7 |
inst_01_8pol | 16 | 32 | 31 | 32 | 23 | 32 | 8 | 8 |
inst_01_9pol | 18 | 36 | 35 | 36 | 26 | 36 | 9 | 9 |
inst_01_26pol | 210 | 264 | 264 | 264 | 237 | 264 | 66 | 66 |
rco1 | 33 | 36 | 36 | 36 | 40 | 36 | 7 | 7 |
rco2 | 62 | 72 | 72 | 72 | 81 | 72 | 14 | 14 |
rco3 | 82 | 108 | 108 | 108 | 116 | 108 | 21 | 21 |
shapes2 | 68 | 70 | 70 | 70 | 78 | 70 | 8 | 8 |
shapes4 | 127 | 140 | 140 | 140 | 147 | 140 | 16 | 16 |
spfc_instance | 55 | 55 | 55 | 55 | 63 | 55 | 11 | 11 |
trousers | 350 | 388 | 388 | 388 | 424 | 388 | 64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro Junior, B.; Santos, M.C.; de Carvalho, G.N.; de Araújo, L.J.P.; Pinheiro, P.R. Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds. Algorithms 2021, 14, 305. https://doi.org/10.3390/a14110305
Amaro Junior B, Santos MC, de Carvalho GN, de Araújo LJP, Pinheiro PR. Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds. Algorithms. 2021; 14(11):305. https://doi.org/10.3390/a14110305
Chicago/Turabian StyleAmaro Junior, Bonfim, Marcio Costa Santos, Guilherme Nepomuceno de Carvalho, Luiz Jonatã Pires de Araújo, and Placido Rogerio Pinheiro. 2021. "Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds" Algorithms 14, no. 11: 305. https://doi.org/10.3390/a14110305
APA StyleAmaro Junior, B., Santos, M. C., de Carvalho, G. N., de Araújo, L. J. P., & Pinheiro, P. R. (2021). Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds. Algorithms, 14(11), 305. https://doi.org/10.3390/a14110305