Closest Farthest Widest
Abstract
:1. Introduction
2. Derivations
2.1. Projected Gradient Ascent and Homotopy
2.2. Supporting Points and Sublevel Sets
2.3. Symmetry
3. Convergence
- All iterates fall in the compact set S.
- The map M is closed at when .
- The function is continuous on S and satisfies , with strict inequality for .
3.1. Convergence of Frank–Wolfe
3.2. Convergence of Projected Gradient Descent
4. Numerical Experiments
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Valentine, F.A. Convex Sets; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Webster, R. Convexity; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Pope, S.B. Algorithms for Ellipsoids; Cornell University Report No. FDA-08-01; Cornell University: Ithaca, NY, USA, 2008; pp. 1–49. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Beck, A. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB; SIAM: Philadelphia, PA, USA, 2014. [Google Scholar]
- Beck, A. First-Order Methods in Optimization; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Lange, K. MM Optimization Algorithms; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Combettes, C.W.; Pokutta, S. Complexity of linear minimization and projection on some sets. Oper. Res. Lett. 2021, 49, 565–571. [Google Scholar] [CrossRef]
- Won, J.H.; Lange, K.; Xu, J. A unified analysis of convex and non-convex ℓ_p-ball projection problems. Optim. Lett. 2023, 17, 1133–1159. [Google Scholar] [CrossRef]
- Stella, L.; Antonello, N.; Fält, M. ProximalOperators.jl. Available online: https://docs.juliahub.com/ProximalOperators/ez37h/0.14.2/calculus/ (accessed on 27 October 2023).
- Chierchia, G.; Chouzenoux, E.; Combettes, P.; Pesquet, J.C. The Proximity Operator Repository. Available online: http://proximity-operator.net/index.html (accessed on 19 January 2024).
- Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 127–239. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 1996, 22, 469–483. [Google Scholar] [CrossRef]
- de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M. Computational Geometry: Algorithms and Applications; Spinger: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ziegler, G.M. Lectures on Polytopes; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Beck, A.; Eldar, Y.C. Regularization in regression with bounded noise: A Chebyshev center approach. SIAM J. Matrix Anal. Appl. 2007, 29, 606–625. [Google Scholar] [CrossRef]
- Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, Y.; Wright, J.; Goldfarb, D. Scalable robust matrix recovery: Frank-Wolfe meets proximal methods. SIAM J. Sci. Comput. 2016, 38, A3291–A3317. [Google Scholar] [CrossRef]
- Ledoux, M. The Concentration of Measure Phenomenon; American Mathematical Society: Ann Arbor, MI, USA, 2001. [Google Scholar]
- Rademacher, H.; Toeplitz, O. The Enjoyment of Math; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yuille, A.L.; Rangarajan, A. The concave-convex procedure. Neural Comput. 2003, 15, 915–936. [Google Scholar] [CrossRef]
- Jaggi, M. Revisiting Frank–Wolfe: Projection-free sparse convex optimization. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; pp. 427–435. [Google Scholar]
- Ibrahim, A.H.; Kumam, P.; Abubakar, A.B.; Abdullahi, M.S.; Mohammad, H. A Dai-Liao-type projection method for monotone nonlinear equations and signal processing. Demonstr. Math. 2022, 55, 978–1013. [Google Scholar] [CrossRef]
- Lange, K. Computation of the Hausdorff Distance between Two Compact Convex Sets. Algorithms 2023, 16, 471. [Google Scholar] [CrossRef]
- Dunlavy, D.M.; O’Leary, D.P. Homotopy Optimization Methods for Global Optimization; Technical Report; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2005.
- Won, J.H.; Xu, J.; Lange, K. Projection onto Minkowski sums with application to constrained learning. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 3642–3651. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Constantin, N.P.; Persson, L.E. Convex Functions and Their Applications: A Contemporary Approach; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Nekvinda, A.; Zajíček, L. A simple proof of the Rademacher theorem. Časopis pro Pěstování Matematiky 1988, 113, 337–341. [Google Scholar] [CrossRef]
- Rinaldi, F.; Zeffiro, D. Avoiding bad steps in Frank-Wolfe variants. Comput. Optim. Appl. 2023, 84, 225–264. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Bui, M.N.; Wang, X. Projecting onto the intersection of a cone and a sphere. SIAM J. Optim. 2018, 28, 2158–2188. [Google Scholar] [CrossRef]
- Zangwill, W.I. Nonlinear Programming: A Unified Approach; Prentice-Hall: Hoboken, NJ, USA, 1969. [Google Scholar]
- Lacoste-Julien, S. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv 2016, arXiv:1607.00345. [Google Scholar]
- Mangasarian, O.L. Machine learning via polyhedral concave minimization. In Applied Mathematics and Parallel Computing: Festschrift for Klaus Ritter; Springer: Berlin/Heidelberg, Germany, 1996; pp. 175–188. [Google Scholar]
- Yurtsever, A.; Sra, S. CCCP is Frank–Wolfe in disguise. Adv. Neural Inf. Process. Syst. 2022, 35, 35352–35364. [Google Scholar]
- Attouch, H.; Bolte, J.; Svaiter, B.F. Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 2013, 137, 91–129. [Google Scholar] [CrossRef]
- Bertsekas, D. Nonlinear Programming, 2nd ed.; Athena Scientific: Nashua, NH, USA, 1999. [Google Scholar]
- Güler, O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control. Optim. 1991, 29, 403–419. [Google Scholar] [CrossRef]
- Iusem, A.N. On the convergence properties of the projected gradient method for convex optimization. Comput. Appl. Math. 2003, 22, 37–52. [Google Scholar] [CrossRef]
- Lange, K.; Won, J.H.; Landeros, A.; Zhou, H. Nonconvex optimization via MM algorithms: Convergence theory. arXiv 2021, arXiv:2106.02805. [Google Scholar]
Set | Dimension | Type | Homotopy | Fraction | Maximum | Seconds |
---|---|---|---|---|---|---|
box | 2 | farthest | no | 2.9624 | 0.13 | |
box | 2 | widest | no | 1.0 | 2.8284 | 0.0708 |
box | 2 | widest | yes | 1.0 | 2.8284 | 0.0709 |
ball ∩ orthant | 2 | farthest | no | 2.5994 | 0.0817 | |
ball ∩ orthant | 2 | widest | no | 0.52 | 1.4142 | 0.0756 |
ball ∩ orthant | 2 | widest | yes | 0.52 | 1.4142 | 0.0612 |
simplex | 2 | farthest | no | 2.5465 | 0.0734 | |
simplex | 2 | widest | no | 1.0 | 1.4142 | 0.0697 |
simplex | 2 | widest | yes | 1.0 | 1.4142 | 0.0707 |
L1 ball | 2 | farthest | no | 2.5465 | 0.0754 | |
L1 ball | 2 | widest | no | 1.0 | 2.0 | 0.0764 |
L1 ball | 2 | widest | yes | 1.0 | 2.0 | 0.0761 |
elastic net | 2 | farthest | no | 2.2883 | 0.113 | |
elastic net | 2 | widest | no | 1.0 | 1.4641 | 0.0818 |
elastic net | 2 | widest | yes | 1.0 | 1.4641 | 0.277 |
box | 3 | farthest | no | 3.9572 | 0.0472 | |
box | 3 | widest | no | 1.0 | 3.4641 | 0.0458 |
box | 3 | widest | yes | 1.0 | 3.4641 | 0.0651 |
ball ∩ orthant | 3 | farthest | no | 3.2791 | 0.0443 | |
ball ∩ orthant | 3 | widest | no | 0.78 | 1.4142 | 0.0436 |
ball ∩ orthant | 3 | widest | yes | 0.78 | 1.4142 | 0.0694 |
simplex | 3 | farthest | no | 3.0727 | 0.045 | |
simplex | 3 | widest | no | 1.0 | 1.4142 | 0.0461 |
simplex | 3 | widest | yes | 1.0 | 1.4142 | 0.0763 |
L1 ball | 3 | farthest | no | 3.0727 | 0.0439 | |
L1 ball | 3 | widest | no | 1.0 | 2.0 | 0.0465 |
L1 ball | 3 | widest | yes | 1.0 | 2.0 | 0.0671 |
elastic net | 3 | farthest | no | 2.8509 | 0.0705 | |
elastic net | 3 | widest | no | 1.0 | 1.4641 | 0.0489 |
elastic net | 3 | widest | yes | 1.0 | 1.4641 | 0.249 |
box | 10 | farthest | no | 5.6758 | 0.0475 | |
box | 10 | widest | no | 1.0 | 6.3246 | 0.0454 |
box | 10 | widest | yes | 1.0 | 6.3246 | 0.0612 |
ball ∩ orthant | 10 | farthest | no | 3.6022 | 0.043 | |
ball ∩ orthant | 10 | widest | no | 1.0 | 1.4142 | 0.0449 |
ball ∩ orthant | 10 | widest | yes | 1.0 | 1.4142 | 0.0848 |
simplex | 10 | farthest | no | 3.2937 | 0.0449 | |
simplex | 10 | widest | no | 1.0 | 1.4142 | 0.0442 |
simplex | 10 | widest | yes | 1.0 | 1.4142 | 0.0797 |
L1 ball | 10 | farthest | no | 3.2937 | 0.0434 | |
L1 ball | 10 | widest | no | 1.0 | 2.0 | 0.0427 |
L1 ball | 10 | widest | yes | 1.0 | 2.0 | 0.0696 |
elastic net | 10 | farthest | no | 3.1077 | 0.0496 | |
elastic net | 10 | widest | no | 1.0 | 1.4641 | 0.0537 |
elastic net | 10 | widest | yes | 1.0 | 1.4641 | 0.328 |
box | 1000 | farthest | no | 59.61 | 0.0444 | |
box | 1000 | widest | no | 1.0 | 63.246 | 0.0505 |
box | 1000 | widest | yes | 1.0 | 63.246 | 0.175 |
ball ∩ orthant | 1000 | farthest | no | 31.962 | 0.0425 | |
ball ∩ orthant | 1000 | widest | no | 1.0 | 1.4142 | 0.0447 |
ball ∩ orthant | 1000 | widest | yes | 1.0 | 1.4142 | 0.469 |
simplex | 1000 | farthest | no | 31.325 | 0.0456 | |
simplex | 1000 | widest | no | 1.0 | 1.4142 | 0.046 |
simplex | 1000 | widest | yes | 1.0 | 1.4142 | 0.548 |
L1 ball | 1000 | farthest | no | 31.325 | 0.0427 | |
L1 ball | 1000 | widest | no | 1.0 | 2.0 | 0.0445 |
L1 ball | 1000 | widest | yes | 1.0 | 2.0 | 0.436 |
elastic net | 1000 | farthest | no | 31.3 | 0.523 | |
elastic net | 1000 | widest | no | 1.0 | 1.4641 | 0.277 |
elastic net | 1000 | widest | yes | 1.0 | 1.4641 | 9.21 |
Set | Dimension | Type | Homotopy | Fraction | Maximum | Seconds |
---|---|---|---|---|---|---|
box | 2 | farthest | no | 2.9624 | 0.802 | |
box | 2 | widest | no | 1.0 | 2.8284 | 0.0291 |
box | 2 | widest | yes | 0.99 | 2.8284 | 0.129 |
ball ∩ orthant | 2 | farthest | no | 2.5994 | 0.128 | |
ball ∩ orthant | 2 | widest | no | 0.78 | 1.0 | 0.0278 |
ball ∩ orthant | 2 | widest | yes | 0.51 | 1.4142 | 0.09 |
simplex | 2 | farthest | no | 2.5465 | 0.761 | |
simplex | 2 | widest | no | 1.0 | 1.4142 | 0.0259 |
simplex | 2 | widest | yes | 0.7 | 1.4142 | 0.0906 |
L1 ball | 2 | farthest | no | 2.5465 | 0.154 | |
L1 ball | 2 | widest | no | 1.0 | 2.0 | 0.0273 |
L1 ball | 2 | widest | yes | 0.99 | 2.0 | 0.0912 |
elastic net | 2 | farthest | no | 2.2883 | 0.159 | |
elastic net | 2 | widest | no | 1.0 | 1.4641 | 0.0279 |
elastic net | 2 | widest | yes | 0.82 | 1.4641 | 0.112 |
box | 3 | farthest | no | 3.9572 | 0.0269 | |
box | 3 | widest | no | 1.0 | 3.4641 | 0.0246 |
box | 3 | widest | yes | 0.99 | 3.4641 | 0.0357 |
ball ∩ orthant | 3 | farthest | no | 3.2791 | 0.0257 | |
ball ∩ orthant | 3 | widest | no | 0.9 | 1.0 | 0.0259 |
ball ∩ orthant | 3 | widest | yes | 0.77 | 1.4142 | 0.0286 |
simplex | 3 | farthest | no | 3.0727 | 0.0248 | |
simplex | 3 | widest | no | 0.64 | 1.4142 | 0.0258 |
simplex | 3 | widest | yes | 0.93 | 1.4142 | 0.0291 |
L1 ball | 3 | farthest | no | 3.0727 | 0.0255 | |
L1 ball | 3 | widest | no | 1.0 | 2.0 | 0.025 |
L1 ball | 3 | widest | yes | 1.0 | 2.0 | 0.0296 |
elastic net | 3 | farthest | no | 2.8509 | 0.0574 | |
elastic net | 3 | widest | no | 1.0 | 1.4641 | 0.0303 |
elastic net | 3 | widest | yes | 0.74 | 1.4641 | 0.0616 |
box | 10 | farthest | no | 5.6758 | 0.0283 | |
box | 10 | widest | no | 1.0 | 6.3246 | 0.0314 |
box | 10 | widest | yes | 0.95 | 6.3246 | 0.0401 |
ball ∩ orthant | 10 | farthest | no | 3.6022 | 0.0268 | |
ball ∩ orthant | 10 | widest | no | 1.0 | 1.0 | 0.0279 |
ball ∩ orthant | 10 | widest | yes | 1.0 | 1.4142 | 0.0396 |
simplex | 10 | farthest | no | 3.2937 | 0.0272 | |
simplex | 10 | widest | no | 0.08 | 1.0801 | 0.0271 |
simplex | 10 | widest | yes | 0.88 | 1.4142 | 0.0327 |
L1 ball | 10 | farthest | no | 3.2937 | 0.0271 | |
L1 ball | 10 | widest | no | 1.0 | 2.0 | 0.0272 |
L1 ball | 10 | widest | yes | 0.97 | 2.0 | 0.0363 |
elastic net | 10 | farthest | no | 3.1077 | 0.0415 | |
elastic net | 10 | widest | no | 1.0 | 1.4641 | 0.0289 |
elastic net | 10 | widest | yes | 0.44 | 1.4641 | 0.0962 |
box | 1000 | farthest | no | 59.61 | 0.0515 | |
box | 1000 | widest | no | 1.0 | 63.246 | 0.0914 |
box | 1000 | widest | yes | 0.01 | 63.019 | 1.11 |
ball ∩ orthant | 1000 | farthest | no | 31.962 | 0.0284 | |
ball ∩ orthant | 1000 | widest | no | 1.0 | 1.0 | 0.0377 |
ball ∩ orthant | 1000 | widest | yes | 1.0 | 1.4142 | 0.209 |
simplex | 1000 | farthest | no | 31.325 | 0.0466 | |
simplex | 1000 | widest | no | 0.02 | 1.0005 | 0.0588 |
simplex | 1000 | widest | yes | 0.02 | 1.4142 | 0.632 |
L1 ball | 1000 | farthest | no | 31.325 | 0.0435 | |
L1 ball | 1000 | widest | no | 1.0 | 2.0 | 0.0722 |
L1 ball | 1000 | widest | yes | 0.52 | 2.0 | 0.566 |
elastic net | 1000 | farthest | no | 31.3 | 0.609 | |
elastic net | 1000 | widest | no | 1.0 | 1.4641 | 0.29 |
elastic net | 1000 | widest | yes | 0.03 | 1.4641 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, K. Closest Farthest Widest. Algorithms 2024, 17, 95. https://doi.org/10.3390/a17030095
Lange K. Closest Farthest Widest. Algorithms. 2024; 17(3):95. https://doi.org/10.3390/a17030095
Chicago/Turabian StyleLange, Kenneth. 2024. "Closest Farthest Widest" Algorithms 17, no. 3: 95. https://doi.org/10.3390/a17030095
APA StyleLange, K. (2024). Closest Farthest Widest. Algorithms, 17(3), 95. https://doi.org/10.3390/a17030095