Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Agronomic Trait Measurements
2.4. Statistical Analysis
3. Results
3.1. Grain Yield and N Accumulation Properties
3.2. Root System Architecture Traits Evaluation
3.3. Relationship between RSA, Grain Yield, and N Accumulation
4. Discussion
4.1. Influence of RSA Traits on Grain Yield and N Accumulation
4.2. Correlation between RSA, Grain Yield and N Accumulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, J.P. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F. Untapping root system architecture for crop improvement. J. Exp. Bot. 2016, 67, 4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, G.H.; Chen, F.J.; Yuan, L.X.; Zhang, F.S. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv. Agron. 2016, 139, 73–97. [Google Scholar]
- Li, J.P.; Chen, F.J.; Li, Y.Q.; Li, P.C.; Wang, Y.Q.; Mi, G.H.; Yuan, L.X. ZmRAP2. 7, an AP2 Transcription Factor, Is Involved in Maize Brace Roots Development. Front. Plant Sci. 2019, 10, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, H.; Shi, D.F.; Shi, W.J.; Ban, X.B.; Chen, Y.C.; Ren, W.; Chen, F.J.; Mi, G.H. Genotypic difference in the plasticity of root system architecture of field-grown maize in response to plant density. Plant Soil 2019, 439, 201–217. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Kheir, A.M.S.; Alkharabsheh, H.M.; Seleiman, M.F.; Al-Saif, A.M.; Ammar, K.A.; Attia, A.; Zoghdan, M.G.; Shabana, M.M.A.; Aboelsoud, H.; Schillaci, C. Calibration and Validation of AQUACROP and APSIM Modelsto Optimize Wheat Yield and Water Saving in Arid Regions. Land 2021, 10, 1375. [Google Scholar] [CrossRef]
- Rogers, E.D.; Benfey, P.N. Regulation of plant root system architecture: Implications for crop advancement. Curr. Opin. Biotechnol. 2015, 32, 93–98. [Google Scholar] [CrossRef]
- Su, W.N.; Kamran, M.; Xie, J.; Meng, X.P.; Han, Q.F.; Liu, T.N.; Han, J. Shoot and root traits of summer maize hybrid varieties with higher grain yields and higher nitrogen use efficiency at low nitrogen application rates. PeerJ 2019, 7, e7294. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Y.; Li, S.Q.; Yue, S.C. High-yield characteristics and root support of rain-fed maize under film mulching. Agron. J. 2020, 112, 2115–2131. [Google Scholar] [CrossRef]
- Chen, X.Y.; Liu, P.; Zhao, B.; Zhang, J.W.; Ren, B.Z.; Li, Z.; Wang, Z.Q. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Wu, Q.; Pages, L.; Wu, J. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Ann. Bot. 2016, 117, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.L.; Niu, X.K.; Zhang, Y.M.; Xie, R.Z.; Liu, X.; Li, S.K.; Gao, S.J. Studies on the root characteristics of maize varieties of different eras. J. Integr. Agric. 2013, 12, 426–435. [Google Scholar] [CrossRef]
- Gao, J.; Lei, M.; Yang, L.J.; Wang, P.; Tao, H.B.; Huang, S.B. Reduced row spacing improved yield by optimizing root distribution in maize. Eur. J. Agron. 2021, 127, 126291. [Google Scholar] [CrossRef]
- Le Marie, C.A.; York, L.M.; Strigens, A.; Malosetti, M.; Camp, K.H.; Giuliani, S.; Lynch, J.P.; Hund, A. Shovelomics root traits assessed on the EURoot maize panel are highly heritable across environments but show low genotype-by-nitrogen interaction. Euphytica 2019, 215, 173. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.C.; Chen, F.J.; Chen, Y.L.; Gao, Q.; Yang, X.L.; Yuan, L.X.; Zhang, F.S.; Mi, G.H. Modern maize hybrids in Northeast C hina exhibit increased yield potential and resource use efficiency despite adverse climate change. Glob. Chang. Biol. 2013, 19, 923–936. [Google Scholar] [CrossRef]
- Chen, X.C.; Zhang, J.; Chen, Y.L.; Li, Q.; Chen, F.J.; Yuan, L.; Mi, G.H. Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant Soil 2014, 374, 121–130. [Google Scholar] [CrossRef]
- Zha, L.; Xie, M.L.; Zhu, M.; Dou, P.; Cheng, Q.B.; Wang, X.L.; Yuan, J.C.; Kong, F.L. Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China. J. Appl. Ecol. 2016, 27, 855–862. [Google Scholar]
- Abiven, S.; Hund, A.; Martinsen, V.; Cornelissen, G. Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia. Plant Soil 2015, 395, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Colombi, T.; Kirchgessner, N.; Le Marié, C.A.; York, L.M.; Lynch, J.P.; Hund, A. Next generation shovelomics: Set up a tent and REST. Plant Soil 2015, 388, 1–20. [Google Scholar] [CrossRef]
- Xu, H.; Vandecasteele, B.; Maenhout, P.; Pannecoucque, J.; Neve, S.D.; Sleutel, S. Maize root biomass and architecture depend on site but not on variety: Consequences for prediction of C inputs and spread in topsoil based on root-to-shoot ratios. Eur. J. Agron. 2020, 119, 126121. [Google Scholar] [CrossRef]
- Bremner, J. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Peng, Y.F.; Niu, J.F.; Peng, Z.P.; Zhang, F.S.; Li, C.J. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res. 2010, 115, 85–93. [Google Scholar] [CrossRef]
- Shao, H.; Xia, T.T.; Wu, D.L.; Chen, F.J.; Mi, G.H. Root growth and root system architecture of field-grown maize in response to high planting density. Plant Soil 2018, 430, 395–411. [Google Scholar] [CrossRef]
- Zhai, L.C.; Zhang, L.K.; Yao, H.P.; Zheng, M.J.; Ming, B.; Xie, R.Z.; Zhang, J.T.; Jia, X.L.; Ji, J.J. The Optimal Cultivar—Sowing Date—Plant Density for Grain Yield and Resource Use Efficiency of Summer Maize in the Northern Huang–Huai–Hai Plain of China. Agriculture 2022, 12, 7. [Google Scholar] [CrossRef]
- Mi, G.H.; Chen, F.J.; Wu, Q.P.; Lai, N.W.; Yuan, L.X.; Zhang, F.S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 2010, 53, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Zhao, Y.; Guo, S.; Cheng, S.; Guan, Y.; Cai, H.; Yuan, L.X.; Chen, F.J. Enhanced crown root number and length confers potential for yield improvement and fertilizer reduction in nitrogen-efficient maize cultivars. Field Crops Res. 2019, 241, 107562. [Google Scholar] [CrossRef]
- Garnett, T.; Conn, V.; Kaiser, B.N. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 2009, 32, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Li, S.; White, P.J.; Li, C.J. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen. PLoS ONE 2015, 10, e0121892. [Google Scholar] [CrossRef]
- Lynch, J.P. Harnessing root architecture to address global challenges. Plant J. 2021, 109, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.J.; Liu, J.C.; Liu, Z.G.; Chen, Z.; Ren, W.; Gong, X.P.; Wang, L.F.; Cai, H.G.; Pan, Q.C.; Yuan, L.X.; et al. Breeding for high-yield and nitrogen use efficiency in maize: Lessons from comparison between Chinese and US cultivars. Adv. Agron. 2021, 166, 251–275. [Google Scholar]
- Chun, L.; Mi, G.H.; Li, J.S.; Chen, F.J.; Zhang, F.S. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 2005, 276, 369–382. [Google Scholar] [CrossRef]
- Feng, G.Z.; Zhang, Y.J.; Chen, Y.L.; Li, Q.; Chen, F.J.; Gao, Q.; Mi, G.H. Effects of nitrogen application on root length and grain yield of rain-fed maize under different soil types. Agron. J. 2016, 108, 1656–1665. [Google Scholar] [CrossRef]
- Trachsel, S.; Kaeppler, S.; Brown, K.M.; Lynch, J.P. Maize root growth angles become steeper under low N conditions. Field Crops Res. 2013, 140, 18–31. [Google Scholar] [CrossRef]
Cultivar | Year of Release | Parents | Breeding Institution |
---|---|---|---|
CD30 | 2004 | Chengzi2142 × Zhengzi205-22 | Sichuan Academy of Agricultural Sciences |
ZH311 | 2006 | K236 × 21-ES | Zhenghong Seeds Co., Ltd. (Chengdu, China) |
ZH505 | 2008 | K305 × K389 | Zhenghong Seeds Co., Ltd. (Chengdu, China) |
CD189 | 2009 | SCML203 × SCML1950 | Sichuan Agricultural University |
QY9 | 2011 | Y3052 × 18-599 | Sichuan Academy of Agricultural Sciences |
RY1210 | 2015 | SCML202 × LH8012 | Sichuan Agricultural University |
Treatment | GW (g Plant−1) | HKW (g) | EL (cm) | ED (cm) | RPE | KPR |
---|---|---|---|---|---|---|
Nitrogen (N) | ||||||
N0 | 127.12 b | 28.52 b | 15.81 a | 47.72 b | 16.44 a | 31.847 b |
N150 | 149.02 a | 32.57 a | 16.54 a | 49.65 a | 16.71 a | 35.667 a |
N300 | 149.11 a | 32.17 a | 17.93 a | 48.26 ab | 16.35 a | 35.639 a |
Cultivar (C) | ||||||
CD30 | 126.16 c | 29.55 c | 16.08 a | 46.07 c | 17.08 b | 34.03 b |
ZH311 | 146.03 ab | 33.61 a | 18.06 a | 50.37 a | 16.42 b | 31.31 c |
ZH505 | 148.33 a | 26.21 d | 17.78 a | 49.84 a | 19.17 a | 34.64 ab |
CD189 | 145.74 ab | 32.41 ab | 15.75 a | 48.02 b | 14.86 c | 36.06 a |
QY9 | 140.46 b | 31.0 bc | 16.47 a | 49.39 a | 16.25 b | 35.83 ab |
RY1210 | 143.79 ab | 33.74 a | 16.42 a | 47.59 b | 15.22 c | 34.44 ab |
Year (Y) | ||||||
2019 | 157.72 a | 31.50 a | 17.43 a | 50.08 a | 16.89 a | 38.02 a |
2020 | 125.78 b | 30.68 a | 16.09 a | 47.01 b | 16.11 b | 30.75 b |
Source of variation | ||||||
N | ** | ** | ns | ** | ns | ** |
C | ** | ** | ns | ** | ** | ** |
Y | ** | ns | ns | ** | ** | ** |
N × C | * | ns | ns | ** | ns | * |
N × Y | ** | ns | ns | ** | ns | ns |
C × Y | * | ns | ns | * | ns | * |
N × C × Y | ns | ns | ns | * | ns | ns |
Treatment | N Accumulation at Silking (g plant−1) | N Accumulation at Maturity (g plant−1) | |||||
---|---|---|---|---|---|---|---|
Stem | Leaf | Total | Stem | Leaf | Grain | Total | |
Nitrogen (N) | |||||||
N0 | 0.50 b | 0.57 b | 1.07 b | 0.37 b | 0.20 c | 0.87 b | 1.44 b |
N150 | 0.66 a | 0.90 a | 1.56 a | 0.62 a | 0.34 b | 1.35 a | 2.31 a |
N300 | 0.65 a | 0.92 a | 1.57 a | 0.59 a | 0.36 a | 1.38 a | 2.33 a |
Cultivar (C) | |||||||
CD30 | 0.56 a | 0.76 bc | 1.32 b | 0.51 a | 0.34 a | 1.14 c | 1.98 b |
ZH311 | 0.62 a | 0.84 a | 1.46 a | 0.54 a | 0.29 bc | 1.14 c | 1.97 b |
ZH505 | 0.62 a | 0.78 bc | 1.39 ab | 0.51 a | 0.30 bc | 1.26 ab | 2.07 ab |
CD189 | 0.62 a | 0.82 ab | 1.43 ab | 0.57 a | 0.31 ab | 1.15 c | 2.03 ab |
QY9 | 0.64 a | 0.73 c | 1.37 ab | 0.49 a | 0.28 c | 1.17 bc | 1.94 b |
RY1210 | 0.58 a | 0.84 a | 1.42 ab | 0.53 a | 0.28 c | 1.35 a | 2.17 a |
Year (Y) | |||||||
2019 | 0.62 a | 0.88 a | 1.50 a | 0.64 a | 0.35 a | 1.22 a | 2.21 a |
2020 | 0.59 a | 0.71 b | 1.30 b | 0.41 b | 0.25 b | 1.18 a | 1.84 b |
Source of variation | |||||||
N | ns | ** | ** | ** | ** | ** | ** |
C | ** | ** | * | ns | ** | ** | * |
Y | ns | ** | ** | ** | ** | ns | ** |
N × C | ns | ** | * | * | * | ns | * |
N × Y | ns | ns | ns | ns | ** | ns | * |
C × Y | ns | ** | * | ns | ns | ** | ns |
N × C × Y | ns | * | ns | ns | ** | * | ns |
Treatment | Root Weight (g Plant−1) | Total Length (cm) | Surface Area (cm2) | Angle Opening (°) | Maximal Width (cm) |
---|---|---|---|---|---|
Nitrogen (N) | |||||
N0 | 12.21 b | 1325.30 b | 228.56 b | 88.08 b | 15.08 c |
N150 | 19.81 a | 1595.54 a | 271.03 a | 105.63 a | 17.61 a |
N300 | 19.39 a | 1563.32 a | 269.11 a | 104.17 a | 16.47 b |
Cultivar (C) | |||||
CD30 | 17.30 b | 1376.23 c | 252.83 bc | 104.42 a | 17.63 a |
ZH311 | 17.09 b | 1551.27 b | 255.06 bc | 97.19 b | 15.67 bc |
ZH505 | 17.28 b | 1558.24 b | 281.67 a | 97.62 b | 17.08 a |
CD189 | 16.56 b | 1353.67 c | 249.44 c | 97.40 b | 16.02 b |
QY9 | 14.22 c | 1477.61 b | 232.50 d | 93.74 b | 14.79 c |
RY1210 | 20.36 a | 1651.29 a | 265.89 b | 105.41 a | 17.11 a |
Year (Y) | |||||
2019 | 22.76 a | 1863.40 a | 284.17 a | 101.05 a | 16.45 a |
2020 | 11.52 b | 1126.04 b | 228.30 b | 97.55 b | 16.32 a |
Source of variation | |||||
N | ** | ** | ** | ** | ** |
C | ** | ** | ** | ** | ** |
Y | ** | ** | ** | * | ns |
N × C | ** | * | ** | * | ** |
N × Y | ** | ns | ns | ns | ns |
C × Y | * | ** | ns | ns | ns |
N × C × Y | ** | * | ** | * | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Liu, Z.; Zhou, Z.; Lu, T.; Chen, S.; He, M.; Zeng, X.; Chen, K.; Yu, H.; Shangguan, Y.; et al. Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China. Agriculture 2022, 12, 209. https://doi.org/10.3390/agriculture12020209
Guo S, Liu Z, Zhou Z, Lu T, Chen S, He M, Zeng X, Chen K, Yu H, Shangguan Y, et al. Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China. Agriculture. 2022; 12(2):209. https://doi.org/10.3390/agriculture12020209
Chicago/Turabian StyleGuo, Song, Zhigang Liu, Zijun Zhou, Tingqi Lu, Shanghong Chen, Mingjiang He, Xiangzhong Zeng, Kun Chen, Hua Yu, Yuxian Shangguan, and et al. 2022. "Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China" Agriculture 12, no. 2: 209. https://doi.org/10.3390/agriculture12020209
APA StyleGuo, S., Liu, Z., Zhou, Z., Lu, T., Chen, S., He, M., Zeng, X., Chen, K., Yu, H., Shangguan, Y., Dong, Y., Chen, F., Liu, Y., & Qin, Y. (2022). Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China. Agriculture, 12(2), 209. https://doi.org/10.3390/agriculture12020209