Sampling Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Analysis
2.2.1. Delineation of Sampling Strata
2.2.2. Definition of Sample Sizes
2.2.3. Sampling Methods
- Fair: 90% confidence level, 15% precision;
- Good: 95% confidence level, 15% precision;
- Excellent: 95% confidence level, 10% precision.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agroseguro. Informe Anual (Annual Report); Agroseguro: Madrid, Spain, 2013. [Google Scholar]
- Boletín Oficial del Estado. Orden PRE/1950/2005, de 17 de Junio, por la que se Aprueba la Norma Específica de Peritación de Daños en la Producción de Frutales, Amparados por el Seguro Agrario Combinado; Ministerio de la Presidencia: Madrid, Spain, 2005; pp. 22172–22176.
- Wulfsohn, D.; Zamora, F.A.; Téllez, C.P.; Lagos, I.Z.; García-Fiñana, M. Multilevel systematic sampling to estimate total fruit number for yield forecasts. Precis. Agric. 2012, 13, 256–275. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977; ISBN 047116240X. [Google Scholar]
- Meyers, J.; Sacks, G.; van Es, H.; Vanden Heuvel, J.E. Improving vineyard sampling efficiency via dynamic spatially explicit optimisation. Aust. J. Grape Wine Res. 2011, 17, 306–315. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis-Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA): Software for Subfield Management Zone Delineation. Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Fridgen, J.; Fraise, C.; Kitchen, N.; Sudduth, K. Delineation and analysis of site-specific management zones. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; ERIM International: Ann Arbor, MI, USA, 2000; pp. 402–411. [Google Scholar]
- Santesteban, L.G.; Urretavizcaya, I.; Miranda, C.; García, A.; Royo, J.B. Agronomic significance of the zones defined within vineyards early in the season using NDVI and fruit load information. Papers Presented at the 9th European Conference on Precision Agriculture, ECPA 2013, Lleida, Spain, 7–11 July 2013; pp. 641–647. [Google Scholar]
- Urretavizcaya, I.; Santesteban, L.G.; Tisseyre, B.; Guillaume, S.; Miranda, C.; Royo, J.B. Oenological significance of vineyard management zones delineated using early grape sampling. Precis. Agric. 2014, 15, 111–129. [Google Scholar] [CrossRef]
- Perry, E.M.; Dezzani, R.J.; Seavert, C.F.; Pierce, F.J. Spatial variation in tree characteristics and yield in a pear orchard. Precis. Agric. 2010, 11, 42–60. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Daniele, E.; Escolà, A.; Arnó, J.; Martínez-Casasnovas, J.A. Spatial variability in orchards after land transformation: Consequences for precision agriculture practices. Sci. Total Environ. 2018, 635, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Zude-Sasse, M.; Fountas, S.; Gemtos, T.A.; Abu-Khalaf, N. Applications of precision agriculture in horticultural crops. Eur. J. Hortic. Sci. 2016, 81, 78–90. [Google Scholar] [CrossRef]
- Carrillo, E.; Matese, A.; Rousseau, J.; Tisseyre, B. Use of multi-spectral airborne imagery to improve yield sampling in viticulture. Precis. Agric. 2016, 17, 74–92. [Google Scholar] [CrossRef]
- Liakos, V.; Tagarakis, A.; Fountas, S.; Nanos, G.D.; Tsiropoulos, Z.; Gemtos, T. Use of NDVI to predict yield variability in a commercial apple orchard. In Precision Agriculture ’15; Wageningen Academic Publisher: Wageningen, The Netherlands, 2015; pp. 553–560. [Google Scholar]
- Meyers, J.M.; Vanden Heuvel, J.E. Use of normalized difference vegetation index images to optimize vineyard sampling protocols. Am. J. Enol. Vitic. 2014, 65, 250–253. [Google Scholar] [CrossRef]
- Araya-Alman, M.; Acevedo-Opazo, C.; Guillaume, S.; Valdés-Gómez, H.; Verdugo-Vásquez, N.; Moreno, Y.; Tisseyre, B. Using ancillary yield data to improve sampling and grape yield estimation of the current season. Adv. Anim. Biosci. Precis. Agric. 2017, 8, 515–519. [Google Scholar] [CrossRef]
- McBratney, A.; Moore, A. Application of fuzzy sets to climatic classification. Agric. For. Meteorol. 1985, 35, 165–185. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.r-project.org (accessed on 25 April 2018).
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com (accessed on 25 April 2018).
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Boydell, B.; McBratney, A. Identifying potential within-field management zones from cotton-yield estimates. Precis. Agric. 2002, 3, 9–23. [Google Scholar] [CrossRef]
- Jiménez, C.M.; Royo Díaz, J.B. A statistical model to estimate potential yields in peach before bloom. J. Am. Soc. Hortic. Sci. 2003, 128, 297–301. [Google Scholar]
- Lesch, S. Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties. Comput. Electron. Agric. 2005, 46, 153–179. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Hamilton, R.P. Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Aust. J. Grape Wine Res. 2005, 10, 32–45. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Miranda, C.; Berton, A.; Santesteban, L.G. Evaluation of spectral-based and canopy-based vegetation indices from UAV and Sentinel 2 images to assess spatial variability and ground vine parameters. Adv. Anim. Biosci. 2017, 8, 817–822. [Google Scholar] [CrossRef]
Cultivar | Orchard | Area (ha) | Age (years) | Row Spacing (m) | Tree Spacing (m) | Trees/Orchard | Sampling Nodes (SN) |
---|---|---|---|---|---|---|---|
Catherine | BOL_01 | 8.9 | 12 | 6.0 | 3.9 | 3800 | 192 |
Tochino | MCI_01 | 8.1 | 10 | 6.0 | 4.0 | 3200 | 150 |
Baby Gold 6 | VAL_01 | 9.7 | 22 | 6.0 | 4.5 | 3400 | 176 |
Miraflores | VAL_02 | 8.4 | 22 | 6.0 | 5.0 | 2650 | 159 |
Venus | ABL_01 | 4.5 | 20 | 5.0 | 2.5 | 3420 | 143 |
TCSA (cm2) | RVI | Fruits·Tree−1 | Sample Size | |||||
---|---|---|---|---|---|---|---|---|
Orchard | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | SSCRS | SSSTR |
BOL_01 | 236.7 | 30.3 | 225.5 | 5.9 | 240.6 | 25.4 | 35.3 | 12.0 |
MCI_01 | 190.5 | 20.9 | 157.0 | 16.0 | 245.5 | 21.7 | 16.8 | 9.0 |
VAL_01 | 395.6 | 23.4 | 121.0 | 21.0 | 241.4 | 23.5 | 21.1 | 8.0 |
VAL_02 | 318.8 | 23.1 | 171.9 | 11.5 | 312.9 | 24.2 | 20.5 | 11.0 |
ABL_01 | 187.4 | 26.9 | 143.1 | 36.9 | 147.7 | 36.9 | 27.9 | 10.0 |
Orchard | Sampling Strata (n°) | Mean Decrease in CV | ||
---|---|---|---|---|
TCSA | RVI | Fruit·Tree−1 | ||
BOL_01 | 3 | 30 | 34 | 3 |
MCI_01 | 2 | 23 | 32 | 0 1 |
VAL_01 | 3 | 26 | 42 | 10 |
VAL_02 | 2 | 19 | 26 | 5 |
ABL_01 | 3 | 27 | 28 | 25 |
Orchard | Fair Quality 1 | Good Quality | Excellent Quality | |||
---|---|---|---|---|---|---|
CRS | Stratified | CRS | Stratified | CRS | Stratified | |
BOL_01 | 7–8 | 7–8 | 10–12 | 9–11 | 23–27 | 20–23 |
MCI_01 | 5–7 | 5–6 | 7–10 | 7–9 | 17–23 | 16–19 |
VAL_01 | 6–8 | 5–6 | 9–11 | 6–8 | 20–25 | 14–17 |
VAL_02 | 6–8 | 5–7 | 9–12 | 8–10 | 20–27 | 16–21 |
ABL_01 | 14–18 | 12–14 | 20–25 | 16–19 | 45–56 | 31–36 |
Mean | 8–10 | 7–8 | 11–14 | 9–11 | 25–31 | 19–23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, C.; Santesteban, L.G.; Urrestarazu, J.; Loidi, M.; Royo, J.B. Sampling Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards. Agriculture 2018, 8, 78. https://doi.org/10.3390/agriculture8060078
Miranda C, Santesteban LG, Urrestarazu J, Loidi M, Royo JB. Sampling Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards. Agriculture. 2018; 8(6):78. https://doi.org/10.3390/agriculture8060078
Chicago/Turabian StyleMiranda, Carlos, Luis G. Santesteban, Jorge Urrestarazu, Maite Loidi, and José B. Royo. 2018. "Sampling Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards" Agriculture 8, no. 6: 78. https://doi.org/10.3390/agriculture8060078
APA StyleMiranda, C., Santesteban, L. G., Urrestarazu, J., Loidi, M., & Royo, J. B. (2018). Sampling Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards. Agriculture, 8(6), 78. https://doi.org/10.3390/agriculture8060078