Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedure of Ultrasound-Assisted Alkaline Pretreatment
2.3. Analysis of the Soluble Lignin Content
2.4. Enzymatic Hydrolysis Procedure
2.5. Analysis of Reducing Sugars Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Ultrasound Equipment on the Assisted Alkaline Pretreatment
3.2. The Influence of Ultrasonic Power on the Lignin Extraction and Sugars Yield
3.3. Statistical Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, R.; Rahman, M.S.; Raynie, D.E. Recent advances of greener pretreatment technologies of lignocellulose. Curr. Res. Green Sustain. Chem. 2020, 3, 100035. [Google Scholar] [CrossRef]
- Sharma, A.; Pareek, V.; Zhang, D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef]
- Bussemaker, M.J.; Zhang, D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Ind. Eng. Chem. Res. 2013, 52, 3563–3580. [Google Scholar] [CrossRef]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, G.; Zhang, P.; Li, F.; Fan, S.; Li, J. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust. Bioresour. Technol. 2016, 205, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Chundawat, S.P.S.; Bellesia, G.; Uppugundla, N.; da Costa Sousa, L.; Gao, D.; Cheh, A.M.; Agarwal, U.P.; Bianchetti, C.M.; Phillips, G.N., Jr.; Langan, P.; et al. Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate. J. Am. Chem. Soc. 2011, 133, 11163–11174. [Google Scholar] [CrossRef]
- Yu, Y.; Lou, X.; Wu, H. Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and Its Comparisons with Other Hydrolysis Methods. Energy Fuels 2008, 22, 46–60. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef]
- Luo, J.; Fang, Z.; Smith, R.L. Ultrasound-enhanced conversion of biomass to biofuels. Prog. Energy Combust. Sci. 2014, 41, 56–93. [Google Scholar] [CrossRef]
- Kininge, M.M.; Gogate, P.R. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach. Ultrason. Sonochem. 2022, 82, 105870. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Du, R.; Su, R.; Qi, W.; He, Z. Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech 2018, 8, 166. [Google Scholar] [CrossRef]
- Jun-Hong, L.; Kun-Yu, W. Study on Technology Optimization of Lignin Removalin Cellulose Extraction from Wheat Bran by Combination of Ultrasound and Hydrogen Peroxide. Biotechnology 2016, 15, 135–140. [Google Scholar] [CrossRef]
- Mohammadabadi, S.I.; Javanbakht, V. Lignin extraction from barley straw using ultrasound-assisted treatment method for a lignin-based biocomposite preparation with remarkable adsorption capacity for heavy metal. Int. J. Biol. Macromol. 2020, 164, 1133–1148. [Google Scholar] [CrossRef]
- Kumar, N.; Saharan, V.; Yadav, A.; Aggarwal, N.K. Ultrasound-assisted alkaline pretreatment of Parthenium hysterophorus for fermentable sugar production using a response surface approach. Sustain. Chem. Clim. Action 2023, 2, 100027. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; HoBowacz, I.; Łukajtis, R.; Glinka, M.; KamiDski, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- ULTRA-MINT Technologies. Available online: http://ultramint.chimie.upb.ro/en/index.php (accessed on 10 November 2023).
- Sluiter, A.H.B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass, Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Wood, I.P.; Elliston, A.; Ryden, P.; Bancroft, I.; Roberts, I.N.; Waldron, K.W. Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 2012, 44, 117–121. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Patil, S.S.; Rathod, V.K. Synergistic Effect of Ultrasound and Three Phase Partitioning for the Extraction of Curcuminoids from Curcuma longa and its Bioactivity Profile. Process Biochem. 2020, 93, 85–93. [Google Scholar] [CrossRef]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Calcan, S.I.; Pârvulescu, O.C.; Ion, V.A.; Răducanu, C.E.; Bădulescu, L.; Dobre, T.; Egri, D.; Moț, A.; Popa, V.; Crăciun, M.E. Valorization of Vine Prunings by Slow Pyrolysis in a Fixed-Bed Reactor. Processes 2021, 10, 37. [Google Scholar] [CrossRef]
- Draghici-Popa, A.M.; Boscornea, A.C.; Brezoiu, A.M.; Tomas, S.T.; Parvulescu, O.C.; Stan, R. Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts. Antioxidants 2023, 12, 1897. [Google Scholar] [CrossRef]
Run | RSL (g/100 mL) | A (%) | t (°C) | x1 | x2 | x3 | YL (mg/g) | YS (mg GE/g) | YL,pred (mg/g) | YS,pred (mg GE/g) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 20 | 30 | −1 | −1 | −1 | 11.55 | 95.08 | 13.42 | 87.04 |
2 | 1.5 | 20 | 30 | 1 | −1 | −1 | 10.17 | 97.47 | 9.27 | 105.70 |
3 | 0.5 | 60 | 30 | −1 | 1 | −1 | 22.57 | 101.79 | 21.21 | 107.97 |
4 | 1.5 | 60 | 30 | 1 | 1 | −1 | 17.17 | 132.58 | 17.07 | 126.64 |
5 | 0.5 | 20 | 50 | −1 | −1 | 1 | 15.47 | 98.47 | 16.10 | 103.22 |
6 | 1.5 | 20 | 50 | 1 | −1 | 1 | 14.04 | 126.39 | 11.96 | 121.88 |
7 | 0.5 | 60 | 50 | −1 | 1 | 1 | 25.53 | 126.61 | 23.90 | 124.15 |
8 | 1.5 | 60 | 50 | 1 | 1 | 1 | 17.17 | 140.17 | 19.75 | 142.82 |
9 | 1 | 40 | 40 | 0 | 0 | 0 | 15.96 | 106.31 | 16.58 | 114.93 |
10 | 1 | 40 | 40 | 0 | 0 | 0 | 16.15 | 129.30 | 16.58 | 114.93 |
11 | 1 | 40 | 40 | 0 | 0 | 0 | 16.29 | 118.66 | 16.58 | 114.93 |
12 | 1 | 40 | 40 | 0 | 0 | 0 | 16.94 | 106.31 | 16.58 | 114.93 |
13 | 1.25 | 60 | 50 | 0.5 | 1 | 1 | 18.73 | 131.56 | 20.79 | 138.15 |
14 | 1.25 | 60 | 50 | 0.5 | 1 | 1 | 20.16 | 136.84 | 20.79 | 138.15 |
15 | 1.25 | 60 | 50 | 0.5 | 1 | 1 | 22.45 | 140.18 | 20.79 | 138.15 |
Regressor | k | βk1 | SEk1 | tk1 | pk1 | βk2 | SEk2 | tk2 | pk2 |
---|---|---|---|---|---|---|---|---|---|
Intercept | 1 | 16.58 | 0.468 | 35.46 | 0.0000 | 114.9 | 2.564 | 44.82 | 0.0000 |
x1 | 2 | −2.073 | 0.573 | −3.619 | 0.0068 | 9.332 | 3.140 | 2.972 | 0.0178 |
x2 | 3 | 3.899 | 0.573 | 6.806 | 0.0001 | 10.47 | 3.140 | 3.333 | 0.0103 |
x3 | 4 | 1.343 | 0.573 | 2.345 | 0.0471 | 8.090 | 3.140 | 2.576 | 0.0328 |
R2 | 0.890 | 0.769 | |||||||
R2adj | 0.849 | 0.682 | |||||||
SEE | 0.044 | 8.882 | |||||||
F | 21.64 | 8.859 | |||||||
p (significance F) | 3.4 × 10−4 | 6.4 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrila, A.I.; Vartolomei, A.; Calinescu, I.; Vinatoru, M.; Parvulescu, O.C.; Psenovschi, G.; Chipurici, P.; Trifan, A. Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals. Agronomy 2024, 14, 903. https://doi.org/10.3390/agronomy14050903
Gavrila AI, Vartolomei A, Calinescu I, Vinatoru M, Parvulescu OC, Psenovschi G, Chipurici P, Trifan A. Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals. Agronomy. 2024; 14(5):903. https://doi.org/10.3390/agronomy14050903
Chicago/Turabian StyleGavrila, Adina I., Anamaria Vartolomei, Ioan Calinescu, Mircea Vinatoru, Oana C. Parvulescu, Grigore Psenovschi, Petre Chipurici, and Adrian Trifan. 2024. "Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals" Agronomy 14, no. 5: 903. https://doi.org/10.3390/agronomy14050903
APA StyleGavrila, A. I., Vartolomei, A., Calinescu, I., Vinatoru, M., Parvulescu, O. C., Psenovschi, G., Chipurici, P., & Trifan, A. (2024). Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals. Agronomy, 14(5), 903. https://doi.org/10.3390/agronomy14050903