Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacteria Inoculants and Culture Conditions
2.2. Laboratory Alfalfa Silage Preparation
2.3. Analytical Methods
2.4. Aerobic Stability Measurement
2.5. Statistical Analyses
3. Results
3.1. Fermentation Characteristics of Alfalfa Silages During Ensiling
3.2. Microbial Counts of Alfalfa Silage During Ensiling
3.3. Chemical Composition of Alfalfa Silages Ensiled for 60 Days
3.4. Effect of Inoculants on Aerobic Stability of 60 d Alfalfa Silage
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/drugresistance/index.html (accessed on 24 July 2019).
- Joerger, R.D. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poultry Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Balciunas, E.M.; Martinez, F.A.C.; Todorov, S.D.; de Melo Franco, B.D.G.; Converti, A.; de Souza Oliveira, R.P. Novel biotechnological applications of bacteriocins: A review. Food Control 2013, 32, 134–142. [Google Scholar] [CrossRef]
- Allen, H.K.; Levine, U.Y.; Looft, T.; Bandrick, M.; Casey, T.A. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 2013, 21, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broberg, A.; Jacobsson, K.; Ström, K.; Schnürer, J. Metabolite profiles of lactic acid bacteria in grass silage. Appl. Environ. Microbiol. 2007, 73, 5547–5552. [Google Scholar] [CrossRef] [Green Version]
- Gollop, N.; Zakin, V.; Weinberg, Z.G. Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants. J. Appl. Microbiol. 2005, 98, 662–666. [Google Scholar] [CrossRef]
- Li, D.; Ni, K.; Pang, H.; Wang, Y.; Cai, Y.; Jin, Q. Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian Australas. J. Anim. Sci. 2015, 28, 620–631. [Google Scholar] [CrossRef] [Green Version]
- O’sullivan, L.; Ross, R.P.; Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef]
- Reich, L.J.; Kung, L., Jr. Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Technol. 2010, 159, 105–109. [Google Scholar] [CrossRef]
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Guerra, N.P.; Pastrana, L. Evaluation of two bacteriocin producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Anim. Feed Sci. Technol. 2012, 175, 137–149. [Google Scholar] [CrossRef]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Pastrana, L. Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages. J. Dairy Sci. 2016, 99, 8070–8080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flythe, M.D.; Russell, J.B. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiol. Ecol. 2004, 47, 215–222. [Google Scholar] [CrossRef]
- Marcinakova, M.; Lauková, A.; Simonová, M.; Strompfová, V.; Koréneková, B.; Nad, P. A new probiotic and bacteriocin producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech J. Anim. Sci. 2008, 53, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Da Silva, T.C.; Ribeiro, L.G.; Mantovani, H.C.; Santos, S.A. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. J. Dairy Sci. 2016, 99, 1895–1902. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Yu, Z.; Zhu, W. Monensin and nisin affect rumen fermentation and microbiota differently in vitro. Front. Microbiol. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Bharti, V.; Mehta, A.; Singh, S.; Jain, N.; Ahirwal, L.; Mehta, S. Bacteriocin: A novel approach for preservation of food. Int. J. Pharm. Pharm. Sci. 2015, 7, 20–29. [Google Scholar]
- Helander, I.M.; Mattila-Sandholm, T. Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int. J. Food Microbiol. 2000, 60, 153–161. [Google Scholar] [CrossRef]
- Zacharof, M.P.; Lovitt, R.W. Bacteriocins produced by lactic acid bacteria a review article. Apcbee Procedia 2012, 2, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Zhang, L.; Tuo, Y.; Han, X.; Du, M. A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria. Food Control 2010, 21, 426–430. [Google Scholar] [CrossRef]
- Ding, W.; Wang, L.; Zhang, J.; Ke, W.; Zhou, J.; Zhu, J.; Guo, X.; Long, R. Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau. J. Funct. Foods 2017, 35, 481–488. [Google Scholar] [CrossRef]
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L., Jr. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD/1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter concentrations. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Camino, G. Biodegradation of poly (lactic acid) and its nanocomposites. Polym. Degrad. Stab. 2009, 94, 1646–1655. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R. Buffering capacity of herbage samples as a factor in ensilage. J. Sci. Food Agric. 1962, 13, 395–400. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Fisher, W.J.; Tweed, J.K.S.; Wilkins, R.J. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 2003, 86, 2598–2611. [Google Scholar] [CrossRef]
- Guo, X.S.; Undersander, D.J.; Combs, D.K. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed crop tall fescue and meadow fescue. J. Dairy Sci. 2013, 96, 1735–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, L., Jr. Silage fermentation end products and microbial populations: Their relationships to silage quality and animal productivity. In Proceedings of the Annual Conference of the American Association of Bovine Practitioners, Charlotte, NC, USA, 25–27 September 2008; pp. 25–27. [Google Scholar]
- Smith, L.H. Theoretical carbohydrates requirement for alfalfa silage production. Agron. J. 1962, 54, 291–293. [Google Scholar] [CrossRef]
- Filya, I.; Ashbell, G.; Hen, Y.; Weinberg, Z.G. The effect of bacterial inoculants on the fermentation and aerobic stability of whole crop wheat silage. Anim. Feed Sci. Technol. 2000, 88, 39–46. [Google Scholar] [CrossRef]
- Filya, I.; Muck, R.E.; Contreras-Govea, F.E. Inoculant effects on alfalfa silage: Fermentation products and nutritive value. J. Dairy Sci. 2007, 90, 5108–5114. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Govea, F.E.; Muck, R.E.; Mertens, D.R.; Weimer, P.J. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr-corn, and corn silages. Anim. Feed Sci. Technol. 2011, 163, 2–10. [Google Scholar] [CrossRef]
- Whiter, A.G.; Kung, L., Jr. The effect of a dry or liquid application of Lactobacillus plantarum MTD/1 on the fermentation of alfalfa silage. J. Dairy Sci. 2001, 84, 2195–2202. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, H.; Yu, Z.; Zhang, Y. Changes in the distribution of nitrogen and plant enzymatic activity during ensilage of lucerne treated with different additives. Grass Forage Sci. 2007, 62, 35–43. [Google Scholar] [CrossRef]
- Elferink, S.J.O.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Basso, F.C.; Rabelo, C.H.; Lara, E.C.; Siqueira, G.R.; Reis, R.A. Effects of Lactobacillus buchneri NCIMB 40788 and forage: Concentrate ratio on the growth performance of finishing feedlot lambs fed maize silage. Anim. Feed Sci. Technol. 2018, 244, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Guo, G.; Wen, A.; Desta, S.T.; Wang, J.; Wang, Y.; Shao, T. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Anim. Feed Sci. Technol. 2015, 207, 41–50. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Jia, L.; Yu, K. Effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation characteristics and aerobic stability of whipgrass silage in laboratory silos. Grassl. Sci. 2014, 60, 233–239. [Google Scholar] [CrossRef]
- Yitbarek, M.B.; Tamir, B. Silage additives. Open J. Appl. Sci. 2014, 4, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Denoncourt, P.; Caillet, S.; Lacroix, M. Bacteriological and chemical changes occurring in bunker stored silage covered with biodegradable coating. J. Appl. Microbiol. 2007, 103, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, K.; Roß, F.; Weiß, K.; Büscher, W.; Südekum, K.H. Changes in maize silage fermentation products during aerobic deterioration and effects on dry matter intake by goats. Agric. Food Sci. 2013, 22, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.C.; Lock, A.L.; Mechor, G.D.; Kung, L., Jr. Effects of a spoilage yeast from silage on in vitro ruminal fermentation. J. Dairy Sci. 2015, 98, 2603–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Smaoui, S.; Elleuch, L.; Bejar, W.; Karray-Rebai, I.; Ayadi, I.; Jaouadi, B.; Mathieu, F.; Chouayekh, H.; Bejar, S.; Mellouli, L. Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl. Biochem. Biotech. 2010, 162, 1132–1146. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, V.; Iqbal, A.M.Z.; Haseeb, M.; Khan, M.S. Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe 2014, 27, 87–95. [Google Scholar] [CrossRef]
- Moon, N.J. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Microbiol. 1983, 55, 453–460. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Appl. Bacteriol. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Filya, I. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 2003, 95, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Kung, L., Jr. Understanding the biology of silage preservation to maximize quality and protect the environment. In Proceedings of the California Alfalfa & Forage Symposium and Corn/Cereal Silage Conference, University of California, Visalia, CA, USA, 1–2 December 2010; pp. 41–54. [Google Scholar]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Goncalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Zhang, P.; Li, F.H.; Guo, X.S. Influences of malic acid isomers and their application levels on fermentation quality and biochemical characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2018, 245, 1–9. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Ke, W.; Xu, D.; Zhang, P.; Bai, J.; Mudassar, S.; Muhammad, I.; Guo, X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2019, 282, 211–221. [Google Scholar] [CrossRef]
- Givens, D.I.; Rulquin, H. Utilization by ruminants of nitrogen compounds in silage-based diets. Anim. Feed Sci. Technol. 2004, 114, 1–18. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Cambridge University: Cambridge, UK, 1991; pp. 255–257. [Google Scholar]
- Kung, L., Jr.; Bedrosian, M.D. How well do we really understand silage fermentation? In Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, Cornell University, Ithaca, NY, USA, 19–21 October 2010; pp. 87–93. [Google Scholar]
- Kizilsimsek, M.; Schmidt, R.J.; Kung, L., Jr. Effects of a mixture of lactic acid bacteria applied as a freeze dried or fresh culture on the fermentation of alfalfa silage. J. Dairy Sci. 2007, 90, 5698–5705. [Google Scholar] [CrossRef] [Green Version]
Items 1 | Treatment 2 | Ensiling Time (d) | Mean | RSD 4 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 30 | 60 | T | D | T × D | ||||
pH | C | 5.88 aA | 5.84 bAB | 5.87 aA | 5.73 aB | 5.60 aC | 5.79 a | 0.032 | 0.001 | <0.001 | <0.001 |
F17 | 5.76 aB | 5.96 aA | 5.72 bBC | 5.63 bC | 5.34 cD | 5.68 ab | |||||
LPB | 5.56 bB | 5.78 bA | 5.56 cB | 5.47 cB | 5.29 dC | 5.53 c | |||||
LPN | 5.72 aA | 5.54cB | 5.73 bA | 5.66 bA | 5.48 bB | 5.62 bc | |||||
LA, g/kg | C | 28.5 aB | 11.4 bC | 35.4 bA | 31.6 bAB | 32.3 bAB | 27.8 ab | 0.419 | <0.001 | <0.001 | <0.001 |
F17 | 19.6 bD | 15.6 aD | 52.4 aA | 38.0 aC | 44.5 aB | 34.0 a | |||||
LPB | 27.8 aB | 8.95 cC | 24.5 cB | 26.1 cB | 34.7 bA | 24.4 b | |||||
LPN | 16.6 cB | 9.19 cC | 33.8 bA | 36.4 aA | 37.7 abA | 26.8 ab | |||||
AA, g/kg | C | 14.4 aB | 8.15 bC | 28.2 abA | 27.8 abA | 28.2 A | 21.3 a | 0.481 | 0.023 | <0.001 | <0.001 |
F17 | 6.43 cB | 11.3 aB | 32.7 aA | 30.3 aA | 29.9 A | 22.1 a | |||||
LPB | 10.3 bC | 8.70 bC | 23.4 bB | 24.0 bB | 30.0 A | 19.7 b | |||||
LPN | 7.48 cC | 8.04 bC | 25.8 bB | 31.6 aA | 29.1 AB | 20.4 ab | |||||
PA, g/kg | C | 8.84 aC | 3.15 bD | 12.5 aB | 15.6 bA | 15.9 cA | 11.1 b | 0.571 | <0.001 | <0.001 | <0.001 |
F17 | 4.08 cC | 4.76 aC | 13.5 aB | 15.2 bB | 24.9 aA | 12.5 a | |||||
LPB | 6.48 bD | 3.35 bE | 9.62 bC | 13.6 bB | 19.8 bcA | 10.6 b | |||||
LPN | 5.32 bcD | 3.67 bD | 12.6 aC | 18.2 aB | 22.9 abA | 12.5 a | |||||
LA/AA | C | 1.99 bA | 1.40 aB | 1.27 bBC | 1.14 bC | 1.14 bC | 1.39 b | 0.379 | <0.001 | <0.001 | <0.001 |
F17 | 3.05 aA | 1.38 aCD | 1.60 aB | 1.26 aD | 1.50 aBC | 1.76 a | |||||
LPB | 2.71 aA | 1.03 bC | 1.05 cBC | 1.09 bBC | 1.17 bB | 1.41 b | |||||
LPN | 2.25 bA | 1.15 bB | 1.31 bB | 1.15 bB | 1.31 abB | 1.44 b |
Items 1 | Treatment 2 | Ensiling Time (d) | Mean | RSD 4 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 14 | 30 | 60 | T | D | T × D | ||||
LAB | C | 9.33 bA | 9.31 abA | 8.79 cB | 8.68 abB | 7.80 dC | 8.78 b | 0.063 | <0.001 | <0.001 | <0.001 |
log10cfu/g | F17 | 9.57 aA | 9.12 bB | 9.21 aB | 8.80 aC | 8.09 bD | 8.96 b | ||||
LPB | 9.53 aA | 9.59 aA | 9.10 abB | 8.78 aC | 8.13 aD | 9.03 a | |||||
LPN | 9.56 aA | 9.50 abA | 8.99 bB | 8.56 bC | 8.02 cD | 8.93 b | |||||
Yeasts | C | 8.05 aA | 2.74 C | 3.66 aB | ND | ND | 2.88 b | 0.990 | <0.001 | <0.001 | <0.001 |
log10cfu/g | F17 | 6.57 cA | ND | 3.06 bB | 2.40 bC | ND | 2.41 c | ||||
LPB | 7.36 bA | ND | 2.77 bB | 2.70 abB | ND | 2.57 c | |||||
LPN | 7.77 abA | 2.70 B | 1.97 cC | 3.05 aB | ND | 3.10 a | |||||
Molds | C | 4.70 bA | ND | 2.13 aC | ND | 3.59 aB | 2.08 b | 1.101 | <0.001 | <0.001 | <0.001 |
log10cfu/g | F17 | ND | ND | 2.09 aB | ND | 2.30 bA | 0.88 c | ||||
LPB | ND | ND | 1.70 b | 1.95 a | ND | 0.73 d | |||||
LPN | 5.59 aA | 3.00 B | 1.85 bC | 1.70 bC | ND | 2.43 a |
Item 1 | Treatment (T) 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
C | F17 | LPB | LPN | |||
DM, g/kg | 306.57 c | 326.33 a | 314.93 ab | 310.46 b | 2.519 | 0.005 |
DM loss, g/kg of DM | 84.88 a | 56.39 b | 42.37 b | 51.59 b | 5.641 | 0.013 |
WSC, g/kg of DM | 3.86 c | 4.35 b | 4.54 a | 4.65 a | 0.092 | <0.001 |
CP, g/kg of DM | 202.15 c | 215.40 b | 212.38 b | 222.78 a | 2.309 | <0.001 |
NPN, g/kg of TN | 621.43 a | 632.81 a | 499.01 b | 607.88 a | 16.230 | <0.001 |
AA-N, g/kg of TN | 239.59 a | 142.08 b | 147.57 b | 143.20 b | 12.582 | <0.001 |
NH3-N, g/kg of TN | 132.49 a | 111.11 ab | 84.56 bc | 61.93 c | 8.095 | <0.001 |
aNDF, g/kg of DM | 345.24 a | 336.14 b | 331.98 b | 334.87 b | 1.859 | 0.032 |
ADF, g/kg of DM | 257.55 | 252.24 | 247.97 | 249.79 | 1.512 | 0.106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Ding, Z.; Adesogan, A.T.; Ke, W.; Jiang, Y.; Bai, J.; Mudassar, S.; Zhang, Y.; Huang, W.; Guo, X. Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage. Animals 2020, 10, 1575. https://doi.org/10.3390/ani10091575
Li F, Ding Z, Adesogan AT, Ke W, Jiang Y, Bai J, Mudassar S, Zhang Y, Huang W, Guo X. Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage. Animals. 2020; 10(9):1575. https://doi.org/10.3390/ani10091575
Chicago/Turabian StyleLi, Fuhou, Zitong Ding, Adegbola T. Adesogan, Wencan Ke, Yun Jiang, Jie Bai, Shah Mudassar, Yixin Zhang, Wenkang Huang, and Xusheng Guo. 2020. "Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage" Animals 10, no. 9: 1575. https://doi.org/10.3390/ani10091575
APA StyleLi, F., Ding, Z., Adesogan, A. T., Ke, W., Jiang, Y., Bai, J., Mudassar, S., Zhang, Y., Huang, W., & Guo, X. (2020). Effects of Class IIa Bacteriocin-Producing Lactobacillus Species on Fermentation Quality and Aerobic Stability of Alfalfa Silage. Animals, 10(9), 1575. https://doi.org/10.3390/ani10091575